首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
甘伟 《金属热处理》2016,41(10):176
研究了冷却速度对微合金非调质钢36MnVS6钢组织、强度以及冲击性能的影响。结果表明:轧后冷却速度直接影响铁素体+珠光体的晶粒度和组织强度。提高冷却速度有助于加速铁素体形核,实现晶粒细化。冷却速度控制在1.5 ℃/s得到细化的铁素体+珠光体组织,铁素体不仅沿奥氏体晶界析出,同时在奥氏体内析出形成晶内铁素体组织,随后析出的珠光体团也得到充分细化。冷却速度继续提高到2.0 ℃/s形成铁素体+珠光体+贝氏体组织,冲击性能降低。最佳的冷却速度控制在1.5~2.0 ℃/s。  相似文献   

2.
研究了冷却速度对微合金非调质钢36MnVS6钢组织、强度以及冲击性能的影响。结果表明:轧后冷却速度直接影响铁素体+珠光体的晶粒度和组织强度。提高冷却速度有助于加速铁素体形核,实现晶粒细化。冷却速度控制在1.5℃/s得到细化的铁素体+珠光体组织,铁素体不仅沿奥氏体晶界析出,同时在奥氏体内析出形成晶内铁素体组织,随后析出的珠光体团也得到充分细化。冷却速度继续提高到2.0℃/s形成铁素体+珠光体+贝氏体组织,冲击性能降低。最佳的冷却速度控制在1.5~2.0℃/s。  相似文献   

3.
《铸造技术》2017,(4):816-819
通过控制冷却速度的方法,研究了两组体育器械用Nb微合金化C-Si-Mn-Cr-Nb钢不同冷却速度下的显微组织和显微硬度的变化规律。结果表明,随着冷却速度的降低,两组钢的铁素体晶粒尺寸都逐渐减小,铁素体的体积分数都逐渐降低,在同样的冷却速度下,有Nb钢的铁素体晶粒尺寸更小、铁素体体积分数更低。Nb微合金化,对钢起到了晶粒细化和析出强化的作用,可以提高铁素体的硬度,但对贝氏体显微硬度的影响相对较小。  相似文献   

4.
采用光学显微镜和透射电镜研究了不同冷却速度下钒微合金钢的微观组织和析出相变化规律。结果表明:当冷却速度小于或等于5℃/s时,钢的组织均为铁素体+珠光体,且随着冷却速度的增加,铁素体的晶粒尺寸明显变细。当冷却速度达到10℃/s时,钢的组织变为马氏体+少量铁素体。透射电镜研究显示:平衡态时析出相包含大量弥散分布的尺寸主要为45~100 nm的不规则形V(C,N)相和(V,Ti)(C,N)复合相,当冷却速度小于或等于5℃/s时,析出相数量无明显改变,但颗粒尺寸随冷却速度的增加不断减小;但当冷速达到10℃/s时,析出相的数量显著下降,尺寸变小。对含钒微合金钢而言,调整适当的冷却速度,不仅可以细化铁素体晶粒,还可以提高析出强化效果,从而提高钢材的强韧性。  相似文献   

5.
研究了控轧控冷对锚链用钢25MnV盘条组织和力学性能的影响。结果表明:降低终轧温度和提高冷却速率有助于25MnV钢的屈服强度、抗拉强度和屈强比的提高。冷却速率为2.5℃/s时,随着终轧温度降低,试验钢强度上升,其主要原因是细晶强化和析出强化的共同作用;强韧性上升的原因为晶粒细化和V(C,N)相间析出粒子变细。终轧温度为820℃时,随着冷却速率提高,试验钢强度上升和强韧性下降,其主要原因是显微组织中出现异常组织马氏体岛。  相似文献   

6.
《上海金属》2021,43(2)
对15 mm×100 mm的Q420qENH园林钢试样,在Gleeble-3800型热模拟试验机上进行控制轧制和控制冷却。采用金相显微镜、扫描电镜和透射电镜等设备研究了控轧后的冷却速度对Q420qENH钢显微组织和力学性能的影响。结果表明:控制轧制后以6~18℃/s速率冷却的钢的力学性能均达到了要求,以12和18℃/s速率冷却的钢的强度高于要求值49 MPa以上,屈强比小于0.85;随着冷却速度从2℃/s提高至18℃/s,钢的组织从铁素体+少量珠光体转变为以粒状贝氏体为主的组织,M/A岛面积分数和平均尺寸减小,不同取向晶粒的尺寸减小;随着控轧后冷速的增大,钢中小角度晶界的比例减小,大角度晶界的比例增大;控轧后以不同速度冷却的Q420qENH钢的晶粒尺寸与屈服强度之间存在线性关系,控轧控冷的园林钢的屈服强度可采用拟合的霍尔-佩奇公式预测。  相似文献   

7.
冷却工艺对热轧铁素体贝氏体双相钢组织与性能的影响   总被引:1,自引:0,他引:1  
设计了一种低碳铁素体贝氏体双相钢,用Gleeble-3500热模拟机测定了该试验钢变形后的连续冷却转变(CCT)曲线,并对试验钢进行了控轧控冷试验,研究不同冷却工艺对试验钢组织和性能的影响。结果表明,变形后的CCT曲线分为铁素体转变区和贝氏体转变区。试验钢热轧后经不同冷却方式都能获得铁素体贝氏体双相组织。三段式冷却方式比两段式冷却得到的铁素体体积分数减少,晶粒尺寸更小。840 ℃终轧后水冷到690 ℃,空冷8 s左右,试验钢抗拉强度达到765 MPa,伸长率为20%,综合性能良好。  相似文献   

8.
通过组织观察、力学性能测定等手段,分析了冷却速度、不同热处理工艺对550 MPa级钢的组织和力学性能的影响。结果表明,冷却速度小于1℃/s时,组织以准多边形铁素体为主;当冷却速度为1℃/s~15℃/s时,组织以粒状贝氏体为主;当冷却速度高于15℃/s时,组织以板条贝氏体为主。试验钢分别经900℃淬火、TMCP(控轧控冷技术)后,均采用了相同的时效工艺进行了时效处理。其中,淬火+时效态的试验钢组织以粒状贝氏体为主;经TMCP+时效的试验钢组织以针状铁素体、M/A岛和粒状贝氏体为主,且尺寸细小。淬火+时效的试验钢的屈服强度高于TMCP+时效的试验钢,但试验钢的伸长率无明显变化。  相似文献   

9.
利用Gleeble-1500热模拟试验机进行了控轧控冷热模拟试验,分析了非调质CT80连续油管用钢的精轧变形温度、冷却速度和卷取温度对试验钢组织与性能的影响规律。基于控轧控冷热模拟试验结果,设定了试验钢实验室轧制工艺,在终轧温度830℃、冷却速度46℃/s和卷取温度450℃轧制工艺条件下,获得了具有针状铁素体+贝氏体+少量M/A岛组织构成的成品钢板,其屈服强度620 MPa,抗拉强度754 MPa,伸长率29.2%,屈强比0.82,各项性能均满足CT80连续油管用钢力学性能要求。  相似文献   

10.
采用Gleeble-3800热力模拟机、维氏硬度计、透射电镜等研究了等温工艺对Ti微合金钢组织性能和析出行为影响。结果表明:实验钢在675℃等温时铁素体转变速度最快;随着等温温度降低,析出的TiC体积分数逐渐增大,沉淀强化效果增强,维氏硬度升高;随等温时间延长,TiC粒子在铁素体晶粒内持续析出,维氏硬度增大,硬度分布更加集中;在650℃等温600 s时,析出强化量约为142 MPa。  相似文献   

11.
通过两种成分非调质CT80连续油管用钢现场生产板卷工艺组织性能对比,分析了冷却速度、卷取温度、Mo和Nb元素含量等工艺参数对实验钢组织性能的影响。结果表明:当冷却速度由52℃/s提高到69℃/s后,铁素体形态为针状铁素体,实验钢屈服强度提高25 MPa;抗拉强度提高30 MPa。实验钢在530℃卷取时,组织中出现了3%的珠光体组织,抗拉强度低于性能指标10 MPa。而在400℃卷取时,组织中出现了3%的块状马氏体组织,使得屈服强度低于性能指标20 MPa;抗拉强度提高到690MPa。Mo元素含量提高,促进针状铁素体转变,实验钢淬透性提高,有利于获得M/A岛组织,保证获得高强度低屈强比性能。Nb元素含量提高,细晶强化和析出强化作用更明显。  相似文献   

12.
通过热膨胀试验、显微组织分析和硬度测试,分析了冷却速率和Ti元素对两种22MnB5热成形试验钢相变温度、显微组织、析出相以及硬度等的影响,并绘制了CCT曲线。结果表明,当冷却速率低于5 ℃/s时,试验钢的显微组织主要为铁素体和珠光体;冷却速率达到5 ℃/s后开始形成贝氏体;冷却速率达到30 ℃/s时,获得单一马氏体组织。Ti微合金化可降低Ms点,并通过析出Ti(C, N) 相细化奥氏体晶粒,从而获得细小的马氏体板条,产生的析出强化和细晶强化效应提高了试验钢的强度。  相似文献   

13.
针对当前我国高强建筑用钢的开发,采用Ti-Nb微合金化技术设计试验钢化学成分,通过热膨胀试验确定了试验钢的动态CCT曲线,基于此设计了实验室热轧试验方案,研究了工艺参数对试验钢组织、性能的影响。结果表明:当水冷终冷温度大于610 ℃时,试验钢的显微组织为铁素体+珠光体;当水冷终冷温度小于390 ℃时,试验钢显微组织为少量铁素体+贝氏体;当终轧温度为810 ℃、水冷终冷温度为350 ℃时,试验钢显微组织为少量铁素体+贝氏体,屈服强度为837 MPa,这是细晶强化、相变强化、析出强化共同作用的结果,为800 MPa高强钢筋的研究开发提供了数据支撑和理论指导。  相似文献   

14.
基于汽车轻量化原则,应用热轧+超快冷+弛豫热处理一体化工艺技术得到了1000 MPa级热轧双相钢,并研究了弛豫时间对试验钢组织和性能的影响。结果表明,随着弛豫时间的增加,试验钢中铁素体和马氏体组织的带状分布越明显,其中铁素体晶粒尺寸与体积分数均增加,屈服强度降低,伸长率增加;抗拉强度先增加后降低,是马氏体体积分数和碳含量综合作用的结果;屈强比减小,n值增加。弛豫时间影响两相的体积分数、晶粒大小和内部亚结构。弛豫时间为10 s时,试验钢的抗拉强度为1025 MPa、伸长率为17.5%、屈强比为0.48、n值为0.13,具有最优综合力学性能;综合考虑力学性能和生产效率,试验钢在该工艺技术条件下合适的弛豫时间为7~10 s。  相似文献   

15.
冷却方式对Nb-Ti微合金钢组织和性能及沉淀行为的影响   总被引:2,自引:0,他引:2  
两阶段控制轧制后,采用不同的冷却路径进行冷却,研究冷却路径对Nb-Ti微合金钢组织和性能及沉淀行为的影响.结果表明,超快冷+空冷冷却路径可获得细晶组织,晶粒平均尺寸约为7.76μm,屈服强度高达425 MPa,抗拉强度高达500 MPa.超快冷+炉冷试样中存在细小的沉淀粒子,沉淀粒子尺寸主要集中在2—7 nm,而超快冷+空冷试样中只存在少量球形沉淀粒子,轧后直接空冷可获得相间沉淀粒子.不同冷却路径获得的热轧板在700℃下退火300 s后,沉淀粒子发生明显的粗化;退火处理后,超快冷+炉冷试样的晶粒平均尺寸减小为6.47μm,相对于退火前,其屈服强度和抗拉强度分别增加50和30 MPa、强度的增加主要源于细晶强化.对于含0.03%Nb(质量分数)的Nb-Ti微合金钢,由于沉淀粒子的体积分数有限,因此细晶强化效果远高于沉淀强化效果,强度的变化与晶粒尺寸的变化具有很好的对应性.另外,加工硬化指数与晶粒尺寸密切相关.随着晶粒平均尺寸的增加使加工硬化指数增加.  相似文献   

16.
两阶段控制轧制后,采用不同的冷却路径进行冷却,研究冷却路径对Nb-Ti微合金钢组织和性能及沉淀行为的影响.结果表明,超快冷+空冷冷却路径可获得细晶组织,晶粒平均尺寸约为7.76μm,屈服强度高达425 MPa,抗拉强度高达500 MPa.超快冷+炉冷试样中存在细小的沉淀粒子,沉淀粒子尺寸主要集中在2-7 nm,而超快冷+空冷试样中只存在少量球形沉淀粒子,轧后直接空冷可获得相间沉淀粒子.不同冷却路径获得的热轧板在700℃下退火300 s后,沉淀粒子发生明显的粗化;退火处理后,超快冷+炉冷试样的晶粒平均尺寸减小为6.47μm,相对于退火前,其屈服强度和抗拉强度分别增加50和30 MPa,强度的增加主要源于细晶强化.对于含0.03%Nb(质量分数)的Nb-Ti微合金钢,由于沉淀粒子的体积分数有限,因此细晶强化效果远高于沉淀强化效果,强度的变化与晶粒尺寸的变化具有很好的对应性.另外,加工硬化指数与晶粒尺寸密切相关,随着晶粒平均尺寸的增加使加工硬化指数增加.  相似文献   

17.
基于合金减量化原则,通过热轧+超快冷技术得到了强韧性较好的600 MPa级热轧双相钢,研究了控冷工艺对其组织与性能的影响。结果表明,随着弛豫时间的减少和卷取温度的降低,钢中铁素体体积分数逐渐减少,铁素体晶粒尺寸逐渐减小,抗拉强度由602 MPa 增加至637 MPa,伸长率由31.0%减小至24.0%,屈强比为0.53~0.59,n值为0.17~0.21。综合考虑板形风险和力学性能,试验钢合适的卷取温度为150 ℃,合适的弛豫时间为7 s。  相似文献   

18.
利用Multipas退火试验机模拟连续退火工艺,研究了退火工艺对4.5%Cr冷轧耐候钢组织性能的影响。结果表明,随着退火温度的升高,试验钢的强度先降低后增加,当退火温度为830 ℃时,强度最高,屈服强度均值为353 MPa,抗拉强度均值约为621 MPa。冷速(50 ℃/s、30 ℃/s)对试验钢强度影响有限。当退火温度≤800 ℃时,试验钢的组织只发生了回复再结晶,组织由铁素体、珠光体和碳化物组成。当退火温度>800 ℃,铁素体组织发生了奥氏体化,冷却后形成了贝氏体。当Cr含量(质量分数)提高至4.5%,试验钢的相对腐蚀速率为26%(相对于Q345B钢),相对普通耐候钢SPA-C耐候性能提高约一倍。  相似文献   

19.
文章研究了在采用低温区大变形和轧后连续冷却工艺时,终轧温度对传统Si-Mn系热轧双相钢组织和性能的影响。结果表明,在试验工艺条件下,试验钢的最终组织均为铁素体+马氏体的双相组织。随着终轧温度(770℃~850℃)的升高,试验钢的屈服强度由415MPa急剧降低到335MPa,而抗拉强度变化不大,约为690MPa;随着终轧温度的升高,铁素体晶粒尺寸逐渐均匀,平均晶粒尺寸先增大,后减小,铁素体含量约为88%;试验钢的n值和延伸率,则随着终轧温度的升高而升高,在温度850℃时,n值达到0.23,延伸率达到28.7%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号