首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 156 毫秒
1.
采用真空感应熔炼、热锻和冷拉拔等工艺制备了Cu-2Ag-0.075Y合金线坯,通过拉伸性能测试、导电性能测试和显微组织观察,研究不同退火工艺下Cu-2Ag-0.075Y合金线坯的组织和性能。结果表明,Cu-2Ag-0.075Y合金线坯抗拉强度随着退火时间的延长先显著下降至300~435 MPa,随后下降速率明显放缓,最终趋于平稳,退火温度越高,抗拉强度越低。而伸长率和导电率的变化规律则与抗拉强度相反,先是迅速提升,随后提升速率放缓,最后趋于平稳,550 ℃退火试样可获得较高伸长率和导电率。随着退火温度的提高和退火保温时间的延长,都可以使Cu-2Ag-0.075Y合金线坯组织再结晶程度加大。采用550 ℃×60 min退火工艺,Cu-2Ag-0.075Y合金线坯可以获得细小、均匀的等轴晶组织,良好的伸长率和导电率匹配,有利于其进行后续超微细丝拉拔加工。  相似文献   

2.
用原位变形法制备了Cu-8wt%Fe复合材料,并对其进行退火处理,获得了形变及退火对其组织、力学性能和导电性能的影响规律.Cu-8wt%Fe材料铸态下由等轴状的Cu相和树枝状分布其中的Fe相构成,经热挤压和冷拉拔后转变为纤维状.结果表明,通过退火可以提供相对拉拔态更加优越的强度和导电率匹配,在一定强度下,可提高导电率10%~20%.  相似文献   

3.
采用冷拔结合中间退火工艺制备出Cu-13%Cr-0.24%Zr、Cu-15%Cr-0.24%Zr和Cu-15%Cr形变原位复合线材。研究了Cr含量、Zr元素、中间退火温度及次数对线材极限抗拉强度及导电性能的影响。结果表明:Zr元素可显著提高材料的强度,且对其导电性能影响不大;提高Cr元素含量,对材料的强度有一定贡献,但效果不明显。增加中间退火次数和提高中间退火温度都会使材料的极限抗拉强度降低,导电率升高。本实验中,通过两次500oC中间退火工艺制备的Cu-15%Cr-0.24%Zr线材获得较为优异的综合性能,抗拉强度达到1056MPa,导电率达到73%IACS。  相似文献   

4.
冷轧Cu-15Cr原位复合材料性能及Cr纤维相高温稳定性   总被引:1,自引:0,他引:1  
采用冷轧变形结合中间退火得到形变Cu-15Cr原位纤维增强复合材料。利用扫描电镜、电子拉力试验机及数字微欧计研究退火温度对材料的Cr纤维形貌、抗拉强度及导电性能的影响。结果表明:Cr纤维的高温不稳定性是边缘球化和晶界开裂的结果;随退火温度升高,Cr纤维的高温失稳过程为Cr纤维发生边缘球化、球化向Cr纤维中心扩展、Cr纤维晶界开裂(三叉晶界处)、Cr纤维断裂。随退火温度升高,Cu-15Cr原位复合材料抗拉强度逐渐降低,导电率先逐渐升高,在550℃达到峰值84.4%IACS后迅速下降;经450℃退火,能得到具有较好综合性能的冷轧Cu-15Cr原位复合材料,其抗拉强度达到656 MPa,导电率达到82%IACS。  相似文献   

5.
研究了Cu-10Fe-0.15Zr、Cu-10Fe-2Ag-0.15Zr合金微观组织及性能。测定了在不同条件下试验合金的强度和电导率;并利用扫描电镜对材料的微观组织结构进行了观察和分析。结果表明:Cu-10Fe-0.15Zr、Cu-10Fe-2Ag-0.15Zr原位复合材料经(450~500)℃×1 h的最终退火处理,可获得较好的导电性和强度。热稳定性测试表明进行固溶处理后的形变Cu-10Fe-0.15Zr、Cu-10Fe-2Ag-0.15Zr原位复合材料抗软化温度能提高到450~500℃左右。当退火温度低于500℃时,导电率随着温度的升高而升高,而当温度高于这个温度,导电率逐渐下降。Cu-10Fe-2Ag-0.15Zr形变原位复合材料中间退火温度在450℃左右时,可获得最佳的综合性能,抗拉强度1056 MPa、导电率75%IACS、抗软化温度高于450℃。Cu-10Fe-2Ag-0.15Zr合金中添加微量合金元素Ag可使材料的极限抗拉强度增大,并改善材料的热稳定性,但导电率略有提高。  相似文献   

6.
经冷轧变形和中间退火制备了Cu-15Cr形变原位纤维增强复合薄板材料。用SEM、拉伸试验机和电阻率测试仪研究了变形量及退火温度对Cr纤维形貌、合金强度及导电性能的影响。结果表明:随合金变形量的增加,Cr纤维逐渐变薄、变宽,纤维间距逐渐减小,材料的抗拉强度和导电率都逐渐增大。退火温度升高,材料抗拉强度随之降低,导电率先升高后降低,退火温度为550℃时,导电率峰值为84.4%IACS;退火温度升高,Cr纤维依次发生球化,球化加剧、纤维断裂。最终变形量时,材料达到较好的综合性能匹配,退火前抗拉强度和导电率为694 MPa和78%IACS;500℃退火后抗拉强度和导电率为570 MPa和83%IACS。  相似文献   

7.
铜基形变原位复合材料是制备高强高导铜合金的新方法。由于Fe元素相对Nb、Ag等元素便宜,且板带铜材需求量巨大,使得Cu-Fe原位复合材料带材制备成为高性能铜合金研究的热点。文章通过冷轧和中间退火工艺制备了Cu-15Fe-0.15Zr形变原位复合材料,重点研究了中间退火对该材料抗拉强度、导电率和软化温度的影响。结果表明,中间退火可以在不损害材料强度的情况下大幅提高其电导率,而且材料的抗软化温度大于550℃。通过变形和中间退火的合理配合,可获得较理想的材料抗拉强度和电导率的匹配。  相似文献   

8.
采用OM、XRD、导电率和硬度测试等分析方法研究了固溶时效工艺对Cu-4Ni-2Sn-Si合金的显微组织及性能的影响。结果表明,热轧态Cu-4Ni-2Sn-Si合金中未溶解的第二相Ni2Si颗粒随着固溶温度的升高逐渐回溶,且发生再结晶,再结晶晶粒逐渐长大。当温度升高至900℃时,第二相粒子基本回溶到合金基体中。经时效处理后,合金的硬度受到析出相与再结晶的交互作用的影响。当时效温度低于450℃时,硬度值随时效时间的延长呈现先增大后减小的趋势;而时效温度升高至500℃时,合金硬度值随时效时间的延长而逐渐下降。而导电率则随时效时间的延长一直保持增大的趋势。热轧态Cu-4Ni-2Sn-Si合金经900℃×1 h固溶处理+68%冷轧变形+450℃×6 h时效处理后获得较优的综合性能,其硬度值为225 HB,导电率为24.5%IACS。  相似文献   

9.
采用光学显微镜、扫描电镜、维氏硬度计等研究了真空熔炼制备Cu-14Fe-C合金不同应变量拉拔和不同温度退火处理后的组织、力学性能和导电性能,结果表明,铸态Cu-14Fe-C合金中碳元素主要存在于富铁相内部;拉拔使Cu-14Fe合金中富铁相由铸态时的树枝状随机分布趋向于沿拉拔方向分布,拉拔变形量越大,纤维状富铁相尺寸越细,分布也越均匀;拉拔使Cu-14Fe-0.2C合金中大部分近似球状富铁相逐渐转变为近似椭球状,拉拔变形量越大,近似球状相被拉长得越明显;拉拔变形显著提高Cu-14Fe-C合金的硬度而降低其电阻率; Cu-14Fe-C合金拉拔后退火,电阻率随退火温度提高不断下降。  相似文献   

10.
Zr对Cu-15Cr原位复合材料Cr纤维相及性能的影响   总被引:1,自引:0,他引:1  
通过冷轧变形并结合中间退火制备了Cu-15Cr和Cu-15Cr-0.24Zr形变原位纤维复合薄板材料。采用扫描电子显微镜、拉伸试验机和电阻率测试仪研究了Zr及退火温度对Cr纤维形貌、合金强度及导电性能的影响。结果表明:Cr纤维随退火温度升高依次发生:边缘球化、晶界开裂和纤维断裂;Zr的加入使Cr纤维球化、断裂行为延迟约100℃;Zr提高了复合材料的抗拉强度,并使其抗软化温度提高100℃;450℃时,Cu-15Cr的抗拉强度/导电率达到良好的匹配,为656 MPa/81.7%IACS,550℃时,Cu-15Cr-0.24Zr的抗拉强度/导电率达到良好的匹配,为722 MPa/81.3%IACS。  相似文献   

11.
1 INTRODUCTIONTheCubasedinsitucomposites,whichconsistofCumatrixsreinforcedwithbccorfccmetalssuchasNb[13] ,Ta[4 ] ,Cr[56 ] ,Fe[8,9] andAg[10 ,11] havebeendevelopedtomeettheincreasingindustrialre quirementsformaterialswithhigherstrengthandhigherelectricalconductivity .Thesesocalledinsitucompositesare generallymanufacturedbyvacuumcastingorpowdermetallurgyfollowedbyheavycolddrawingorrolling ,andaresuperiortotheartificialcompositessuchascarbonfilamentreinforcedcoppercompositesduetotheirecon…  相似文献   

12.
分别采用冷拉拔和冷轧变形并结合中间退火工艺,制备了丝状和带状形变Cu-8.3Fe-1Ag原位复合材料。用SEM、精密万能试验机、显微硬度计和电阻测量仪对两种变形方式下试样的微观组织、力学性能和导电性能进行了比较研究。微观组织观察表明:冷拉拔和冷轧变形试样的横截面组织形貌有显著差异,前者为基体上分布着弯曲、扭折、交叠的蠕虫状相,后者为基体上定向排列着与冷轧方向平行的平直颗粒相。力学性能和导电率测试结果表明:相同应变量下,冷拉拔变形的抗拉强度、硬度均高于冷轧变形,但二者的导电率几乎相同。应变量达到6.70时,二者的抗拉强度/硬度/导电率分别达到838 MPa/149 HV/58%IACS和924 MPa/160 HV/58%IACS。  相似文献   

13.
采用扫描电镜、透射电镜、拉伸试验机和热电性能分析系统等研究了退火对Cu-24%Ag合金显微组织、力学性能以及电学性能的影响,通过构建电子界面散射模型对合金导电机制进行了研究。结果表明,通过退火对Cu-24%Ag合金的显微组织进行了有效调控,改善了其综合性能。与冷轧态相比,合金经350 ℃退火1 h后,抗拉强度下降至冷轧态的95%,合金导电率提升了4%IACS。经450 ℃退火1 h,由于Ag纤维的溶解,合金的抗拉强度显著下降,只有冷轧态的一半左右;Ag纤维的溶解降低了电子的散射几率,使得导电率大幅度提升。因此,合金在350 ℃退火1 h后综合性能最佳,其抗拉强度和导电率分别为622 MPa和81%IACS。  相似文献   

14.
ø8 mm退火态T2纯铜棒材,通过工业拉丝机进行多道次冷拉拔变形,最终得到ø3.5 mm的拉拔态试样,对其进行了600 ℃保温不同时间的退火试验,并通过组织形貌的观察、力学和电学性能的测试,研究了退火后纯铜试样组织与性能的关系。结果表明:拉拔态纯铜组织经退火后形成新的再结晶晶粒,并伴有退火孪晶比例的增加。随着退火时间的增长,再结晶晶粒不断长大,抗拉强度和断后伸长率小幅波动。退火态试样的平均抗拉强度为拉拔态的67.3%,平均断后伸长率是拉拔态试样的8倍,平均导电率比拉拔态提高约3.3%,且随着退火时间的增加导电性得到逐步提高。  相似文献   

15.
We investigated the effects of Fe content on microstructure and properties in as-cast and as-drawn Cu-(5.1-x) vol%Ag-x vol%Fe alloys. In microscale, increasing Fe content first refined and then coarsened Cu dendrites. In nanoscale, the size and length of Ag precipitates in Fe-doped alloys were smaller than the size and length of Ag precipitates in Fe-free alloy, and the γ-Fe precipitates in Cu-2.9 vol%Ag-2.4 vol%Fe alloy were finer than the γ-Fe precipitates in Cu-5.1 vol%Fe alloy. The maximum hardness in as-cast Cu-Ag-Fe alloys was found in the Cu-2.9 vol%Ag-2.4 vol%Fe alloy. With increasing drawing strain, both ultimate tensile strength and hardness of Cu-Ag-Fe composites were increased. Simulation data among the relative volume fractions of Fe, hardness and electrical conductivity showed that, as the relative value approached 40%, the Cu-Ag-Fe composite displayed greater hardness than other samples. As a small amount of Ag was replaced by Fe, the electrical conductivity decreased significantly with a descending slope of approximately 3%IACS (International Annealed Copper Standard) per vol% Fe. As 47 vol%Ag was replaced by Fe, however, the electrical conductivity decreased by 51% and remained almost invariable with further increasing Fe content. After annealing at 450 °C for 4 h, the electrical conductivity of the Cu-2.9 vol%Ag-2.4 vol%Fe composite was elevated up to 68.3%IACS from 38.5%IACS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号