首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report the successful fabrication of lateral organic spin valves with a channel length in the sub 100 nm regime. The fabrication process is based on in situ shadow evaporation under UHV conditions and therefore yields clean and oxygen-free interfaces between the ferromagnetic metallic electrodes and the organic semiconductor. The spin valve devices consist of Nickel and Cobalt–Iron electrodes and the high mobility n-type organic semiconductor N,N-bis(heptafluorobutyl)-3,4:9,10-perylene diimide. Our studies comprise fundamental investigations of the process’ and materials’ suitability for the fabrication of lateral spin valve devices as well as magnetotransport measurements at room temperature. The best devices exhibit a magnetoresistance of up to 50%, the largest value for room temperature reported so far.  相似文献   

2.
We report studies of magnetoresistance (MR) in double-layer organic spin valves (DOSV) using tris (8-hydroxyquinolinato) aluminum (Alq3) spacers. The device exhibits three distinct resistance levels depending on the relative magnetizations of the ferromagnetic electrodes. We observed a much weaker bias voltage dependence of MR in the device compared to that in the conventional organic spin valve (OSV). The MR magnitude reduces by the factor of two at 0.7 V bias voltage in the DOSV compared to 0.02 V in the conventional OSV. Remarkably, the MR magnitude reaches 0.3% at 6 V bias in the DOSVs, the largest MR response ever reported in OSVs at this bias. Our finding may have a significant impact on achieving high efficient bipolar OSVs strictly performed at high voltages.  相似文献   

3.
To perform four-terminal nonlocal spin-valve measurements on organic spin-valves, we fabricated lateral spin-valve devices consisting of doped conducting polymer poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) [PEDOT:PSS] and ferromagnetic Ni80Fe20 narrow line (width: 530 nm) electrodes. Although the formula of the nonlocal magnetoresistance with the parameters of doped conducting polymers predicts sufficient nonlocal magnetoresistance, we could not observe any spin signal. The spin diffusion length in the doped PEDOT:PSS device does not appear to be as long as those predicted by both the Elliott–Yafet mechanism and the theory of spin relaxation in organic disordered solids.  相似文献   

4.
We explored mechanisms for the high-field (|B| > 50 mT) decay of organic magneto-electroluminescence. The organic/metal interface in pristine tris (8-hydroxyquinolinato) aluminum-based organic light-emitting diodes was modified by changing the metal cathodes and their deposition methods. The metals investigated were Al, Au, and Cu and the methods used include molecular beam deposition, thermal resistive evaporation, and electron beam evaporation (EBE), respectively. Experimental results revealed that the high-field decay can be observed at room temperature when the cathode is: (i) Cu deposited by EBE or (ii) Au deposited by any of the three deposition methods. Furthermore, this decay is different from the previously reported high-field decay that originates from triplet–triplet annihilation, triplet-charge reaction processes or Δg mechanism. We suggest that the magnetic field can increase the extent of overlap between the electron–hole recombination zone and the organic/metal interface by suppressing electron mobility. The spin–orbital coupling at the organic/metal interface consequently induces intersystem crossing to increase with magnetic field leading to the observed high-field decay.  相似文献   

5.
《Organic Electronics》2014,15(1):175-181
The comparison of light-induced effects in bottom-gate and top-gate organic field effect transistors (OFETs) provide a clear indication, that the nature of interface between the active layer and the gate dielectric plays a major role in the observed light-induced threshold voltage shift. The nature of interface was also analyzed by electron spin resonance (ESR) experiments, which provides a direct evidence for the creation of free radical species when parylene is deposited on the top of the C60 semiconductor layer. The rate of change of light-induced threshold voltage shift strongly depends on the wavelength and intensity of the incident light, and transverse electric field at the interface. The observed effects provide a strong base for the realization of high efficiency organic photodetectors and optical memory devices. The responsivity of organic photodetector was measured up to 1047 A/W.  相似文献   

6.
Electroless-plated gold and platinum films are used as source and drain electrodes in high-performance solution-processed organic field-effect transistors (OFETs), representing a promising large-area, near-room-temperature and vacuum-free technique to form low-resistance metal-to-semiconductor interfaces in ambient atmosphere. Developing non-displacement conditions using a Pt-colloidal catalyst for soft electroless plating, the electrodes are deposited on crystallized thin films of 2,9-didecyl-dinaphtho[2,3-b:2′,3′-f]thieno[3,2-b]thiophene (C10-DNTT) without significant damage to the semiconductor material. The top-contact OFETs show remarkable performance, with a mobility of 6.0 cm2 V?1 s?1. The method represents a practical fabrication technique to mass-produce circuitry arrays of nearly best-performing OFETs for the printed electronics industry.  相似文献   

7.
Bottom-gate, top-contact (inverted staggered) organic thin-film transistors with a channel length of 1 μm have been fabricated on flexible plastic substrates using the vacuum-deposited small-molecule semiconductor 2,9-didecyl-dinaphtho[2,3-b:2′,3′-f]thieno[3,2-b]thiophene (C10-DNTT). The transistors have an effective field-effect mobility of 1.2 cm2/V s, an on/off ratio of 107, a width-normalized transconductance of 1.2 S/m (with a standard deviation of 6%), and a signal propagation delay (measured in 11-stage ring oscillators) of 420 ns per stage at a supply voltage of 3 V. To our knowledge, this is the first time that megahertz operation has been achieved in flexible organic transistors at supply voltages of less than 10 V.  相似文献   

8.
《Organic Electronics》2008,9(5):911-915
With the general objective of studying interfaces between ferromagnetic materials and organic semiconductors, we report ac impedance investigations on La0.7Sr0.3MnO3 (LSMO)/tris(8-hydroxyquinoline)aluminum (Alq3)/Al and Indium Tin Oxide (ITO)/Alq3/Al heterostructures, in the frequency range between 20 Hz and 1 MHz. The comparison of the equivalent circuits deduced to fit the experimental ac responses allows isolating a specific RC contribution which can be attributed to the LSMO/Alq3 interface region. Using the information obtained from our ac measurements, we propose a model which fits the temperature dependence of the magnetoresistance in spin valves combining LSMO electrodes and Alq3 layers.  相似文献   

9.
《Organic Electronics》2007,8(5):606-614
Ultraviolet photoelectron spectroscopy (UPS) was used to determine the energy level alignment at organic–organic conductor–semiconductor and semiconductor–semiconductor hetero-interfaces that are relevant for organic optoelectronic devices. Such interfaces were formed by in situ vacuum sublimation of small molecular materials [C60 and pentacene (PEN)] and ex situ spin-coating of poly(3-hexylthiophene) (P3HT), all on the common substrate poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT:PSS). We found that the deposition sequence had a significant impact on the interface energetics. The hole injection barrier (HIB) of C60 on PEDOT:PSS could be changed from 1.0 eV (moderate hole injection) to 1.7 eV (good electron injection) by introducing a layer of P3HT. The HIB of P3HT/PEDOT:PSS was increased by 0.35 eV due to an interfacial PEN layer. However, PEN deposited on PEDOT:PSS and P3HT/PEDOT:PSS exhibited the same value. These observations are explained by material-dependent dipoles at the interfaces towards PEDOT:PSS and substrate dependent inter-molecular conformation.  相似文献   

10.
We report the synthesis, characterization and behavior in field-effect transistors of non-functionalized soluble diketopyrrolopyrrole (DPP) core with only a solubilizing alkyl chain (i.e. –C16H33 or –C18H37) as the simplest p-channel semiconductor. The characteristics were evaluated by UV–vis and fluorescence spectroscopy, X-ray diffraction, cyclic voltammetry (CV), thermal analysis, atomic force microscopy (AFM) and density functional theory (DFT) calculation. For top-contact field-effect transistors, two types of active layers were prepared either by a solution process (as a 1D-microwire) or thermal vacuum deposition (as a thin-film) on a cross-linked poly(4-vinylphenol) gate dielectric. All the devices showed typical p-channel behavior with dominant hole transports. The device made with 1D-microwiress of DPP-R18 showed field-effect mobility in the saturation region of 1.42 × 10?2 cm2/V s with ION/IOFF of 1.82 × 103. These findings suggest that the non-functionalized soluble DPP core itself without any further functionalization could also be used as a p-channel semiconductor for low-cost organic electronic devices.  相似文献   

11.
We report a unique non-radiative p-n-p junction structure to provide high current conduction with high mobility in organic semiconductor devices. The current conduction was improved by increasing p-n junctions made with intrinsic p-type hole transport layer and n-type electron transport layer. The excellent hole mobility of 5.3 × 10?1 cm2/V s in this p-n-p device configuration is measured by the space charge limited current method with an electric field of 0.3 MV/cm. Enhanced current conduction of 248% at 4.0 V was observed in fluorescent blue organic light-emitting diodes with introduction of non-radiative p-n-p-n-p junction interfaces. Thereupon, the power efficiency at 1000 cd/m2 was improved by 22% and the driving voltage also was reduced by 17%, compared to that of no interface device. Such high current conduction with high mobility is attributed to the carrier recombination at p-n-p interfaces through coulombic interaction. This non-radiative p-n-p junction structure suggested in this report can be very useful for many practical organic semiconductor device applications.  相似文献   

12.
《Organic Electronics》2014,15(7):1657-1663
We report the fabrication and magnetoresistance (MR) of the La0.67Sr0.33MnO3/C60/Co spin valves. The introduction of 1.5 nm AlOx barrier between the C60 layer and cobalt top electrode prevents effectively interfacial diffusion and Co penetration, and thus an appreciable positive MR (as large as 3.65%) at room temperature was exhibited for the devices in the thickness range (5–40 nm) of C60 studied. Possible mechanisms on the MR polarity are proposed. Furthermore, based on the temperature- and thickness- dependent MR and IV characteristics, we have obtained clear evidences that the MR of C60-based spin-valves originates from the tunneling of spin-polarized electrons at the low thickness of C60, however at the larger thickness (>20 nm) the electrons are injected into and subsequently hopping transport within the C60 spacer.  相似文献   

13.
The charge–exciton interaction at the donor/acceptor interface plays a significant role in the exciton dissociation processes, and thus influences the performance of organic solar cells. In this work, the evidences of photocurrent generation via hole–exciton interaction (HEI) at the organic semiconductor interface in organic solar cells, which is the counterpart of photocurrent generated by electron–exciton interaction, is demonstrated. A heterojunction, composed of copper phthalocyanine (CuPc) and fullerene (C60), is used to provide free holes that interact with the excitons supplied by perfluorinated hexadecafluorophthalo-cyaninatozinc (F16ZnPc). The fact that photocurrent generation via HEI is well evidenced by: (1) a short circuit current of 0.38 mA cm−2; (2) the jump of an external quantum efficiency (EQE) around 800 nm after adding a bias light; (3) the EQE variations under bias light of different wavelengths and light intensities; and (4) the superlinear dependence of the photocurrent on the light intensity.  相似文献   

14.
《Organic Electronics》2014,15(8):1884-1889
Solution-processed n-type organic field effect transistors (OFETs) are in need of proper metal contact for improving injection and mobility, as well as balanced hole mobility for building logic circuit units. We address the two distinct problems by a simple technique of transfer-printing. Transfer-printed Au contacts on a terrylene-based semiconductor (TDI) significantly reduced the inverse subthreshold slope by 5.6 V/dec and enhanced the linear mobility by over 5 times compared to evaporated Au contacts. Hence, devices with a high-work-function metal (Au) are comparable with those with low-work-function metals (Al and Ca), indicating a fundamental advantage of transfer-printed electrodes in electron injection. We also transfer-printed a poly(3-hexylthiophene) (P3HT) layer onto TDI to construct a double-channel ambipolar transistor by a solution process for the first time. The transistor exhibits balanced hole and electron mobility (3.0 × 10−3 and 2.8 × 10−3 cm2 V−1 s−1) even in a coplanar structure with symmetric Au electrodes. The technique is especially useful for reaching intrinsic mobility of new materials, and enables significant enlargement of the material tanks for solution-processed functional heterojunction OFETs.  相似文献   

15.
An air ambient operated organic complementary metal oxide semiconductor (CMOS) inverter has been fabricated on poly(ethylene terephthalate) (PET) using pentacene and N,N-dioctyl-3,4,9,10-perylene tetracarboxylic diimide (PTCDI-C8) as active layers with a bilayer dielectric of tetratetracontane (TTC) and gelatin. The inverter performance is greatly improved by replacing the gelatin dielectric with the TTC/gelatin bilayer. With the TTC/gelatin bilayer, both types of organic field-effect transistor (OFET) show better pinch-off and current saturation in output characteristics and negligible hysteresis transfer characteristics. The organic CMOS inverter with the TTC/gelatin bilayer dielectric exhibits balanced motilities of 0.5 (pentacene) and 0.3 cm2 V−1 s−1 (PTCDI-C8) with low threshold voltages of −1 (pentacene) and 3 V (PTCDI-C8). A high static gain of 60 may be achieved with sharp inversion.  相似文献   

16.
《Organic Electronics》2014,15(7):1317-1323
Aligned single-crystalline organic nanowires (NWs) show promising applications in flexible and stretchable electronics, while the use of pre-existing aligned techniques and well-developed photolithography techniques are impeded by the large incompatibility with organic materials and flexible substrates. In this work, aligned copper phthalocyanine (CuPc) organic NWs were grown on flexible and transparent poly(dimethylsiloxane) (PDMS) substrate via a grating-assisted growth approach. Furthermore, a simple yet efficient etching-assisted transfer printing (ETP) method was used to achieve CuPc NW array-based flexible top-gate organic field-effect transistors (OFETs) with a high mobility up to 2.0 cm2 V−1 s−1, a small operating voltage within ±10 V, a high on/off ratio >104, and excellent bend stability with bending radius down to 3 mm. It is expected that the high-performance organic NW array-based top-gate OFETs with exceeding bend stability will have important applications in future flexible electronics.  相似文献   

17.
《Organic Electronics》2008,9(2):262-266
We demonstrate that the electrical properties of n-channel thin film transistors can be enhanced by inserting a nanoscale interfacial layer, namely, cesium carbonate (Cs2CO3), between organic semiconductor and source/drain electrodes. Devices with the Cs2CO3/Al electrode showed a reduction of contact resistance, not only with respect to Al, but also compared to Ca. The improvement is attributed to the reduction in the energy barrier of electron injection and the prevention of unfavorable chemical interaction between the organic layer and the metal electrode. High field-effect mobility of 0.045 cm2/V s and on/off current ratios of 106 were obtained in the [6,6]-phenyl C60 butyric acid methyl ester-based organic thin film transistors using the Cs2CO3/Al electrodes at a gate bias of 40 V.  相似文献   

18.
Oriented organic field-effect transistor (OFET) stripe arrays on hydrophobic substrates were fabricated by fast dip-coating technique. The addressable growth was achieved by decreasing surface energy of the channel areas with respect to the electrodes via hydrophobic treatment. The higher surface energy of the electrodes allows solution to adhere and then organic semiconductors nucleate and bridge the channels after evaporation of the solvent. Area-selective behaviour can be controlled by adjusting surface property of transistor channel, geometry features of the gold electrodes, pulling speed and evaporation atmosphere. The mechanism behind is the competition between receding of the solution and evaporating of the solvent that generate the organic semiconductor films on the substrate. The patterned bottom-contact transistor arrays exhibit carrier mobility of 2.0 × 10−3 cm2 V−1 s−1, while no field-effect characteristics can be detected for bottom-contact arrays without hydrophobic treatment. Such reliable, fast and solution-based patterned OFET arrays are highly desirable for large-scale and low-cost production.  相似文献   

19.
Electrical bistability is an essential property for memory devices. We report here the in-plane electrical bistability of photochromic diarylethene (DAE)/Cu composite film, which is prepared by Cu vapor deposition on the DAE surface with a low glass-transition temperature. The low-current level around 10−8 A was switched to a high-current level of ca. 10−4 A at a low threshold voltage (Vth) in the first voltage sweep. Once this switching occurred, the high-current level was kept in the second voltage sweep, and electrical bistability was achieved for the in-plane current. Vth was distributed in a wide range of voltages (0.5–10 V), and the colored sample obtained by the UV irradiation showed a relatively higher Vth than the colorless sample. The highest ON–OFF ratio in current was ca. 106. The origin of the bistability attributed to the electrical breakdown in the insulated lines that was consisted of DAE in Cu film. The in-plane bistability of the DAE/Cu composite film has good retention time (>60 min) and readout-cycle endurance (>106 cycles), indicating that it is suitable for write-once organic semiconductor memory characteristics.  相似文献   

20.
Wafers of InGaAs-emitting-layer vertical external cavity surface emitting semiconductor laser (VECSEL) gain chip and separate active region were grown on semi-insulator GaAs substrates by low pressure metal–organic vapor phase epitaxy (MOVPE). Photoluminescence (PL) wavelength of the active region could be adjusted linearly about 1 nm for increasing 1 sccm H2 flow rate through TMIn under AsH3 flow rates of 150 sccm. The complicated surface-emitted PL signal of the VECSEL gain chip was strongly modulated by interferences within the multilayer and was interpreted by the aberrance of the quantum wells emission with a profile filtered by a micro-cavity resonance in the longitudinal confinement factor. Material tests of the VECSEL wafer showed the reflectivity of the DBR mirrors was in good agreement with the active region photoluminescence, and the wafer was obtained with high crystal quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号