首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report on the optical and electrochemical characterization (experimental and theoretical) of two donor substituted benzothiadiazole with different cyano based acceptor π-linkers, tetracyanobutadiene (TCBD) SM1 and dicyanoquinomethane (DCNQ) SM2, and explore them as the donor component for solution processed bulk heterojunction organic solar cells, along with PC71BM as the electron acceptor. The solution bulk heterojunction (BHJ) solar cells based on dichloromethane (DCM) processed active layer with SM1 and SM2 as donor and PC71BM as acceptor achieve power conversion efficiency (PCE) of 2.76% and 3.61%, respectively. The solar cells based on these two small molecules exhibit good Voc, which is attributed to their deep HOMO energy level. The higher PCE of the device based on SM2 compared to SM1 is attributed to the its small bandgap, broader absorption profile and enhanced hole mobility. Additionally, the PCE of the SM2:PC71BM based solar cells processed with 1-chloronaphthalene CN (3 v%)/DCM is further improved reaching upto 4.86%. This increase in PCE has been attributed to the improved nanoscale morphology and more balanced charge transport in the device, due to the solvent additive.  相似文献   

2.
In this work we have synthesized and characterized four indoline-based small organic molecules for their use as electron donor moiety in bulk-heterojunction solution processed organic solar cells combined with PC70BM as electron acceptor. Our results show a wide range of light to energy efficiencies from 0.8% to 3.5% under standard measurement conditions. An initial analysis suggests that the main limitation is the device photocurrent due to the device film thickness. Yet, charge transfer dynamics were studied to correlate charge loss mechanisms to π-bridge structural variations and, moreover, mobility measurements were also carried out to fully explain these device limitations.  相似文献   

3.
Two linear organic A–D–A molecules (DTPT and DTPTT) comprised of electron-donating (D) coplanar heteroacenes as core end-capping with electron-accepting (A) dicyanovinylene were investigated as electron donor materials in organic photovoltaic (OPV) applications. The photophysical and electrochemical properties of these two dyes were examined. The A–D–A configuration renders these two molecules to have intense and red-shifted absorption characteristics for better light-harvesting (higher photocurrent density), while retaining relatively low HOMO energy levels for keeping sufficiently high open circuit voltage (Voc) in OPV. The optical constants and molecular orientation of thin films were acquired with variable-angle spectroscopic ellipsometry (VASE). Due to the anisotropic behavior observed in thin film, these two organic donors were firstly adopted to combine with electron acceptor C60 in a vacuum-processed planar heterojunction (PHJ) solar cells. The optimized DTPT-based PHJ device yielded a PCE of 3.01%, whereas the PHJ device based on DTPTT, delivered an inferior PCE of 1.70%. The exciton diffusion length extracted from spectrum-response modeling of PHJ devices is ∼5 nm and ∼4 nm for DTPT and DTPTT, respectively. Replacement of C60 with C70 for a better spectral response in 400–500 nm, planar-mixed heterojunction (PMHJ) SMOSCs without a thin donor layer in between the active layer and MoO3 was found to produce optimum device results. The optimized DTPTT-based device showed a PCE of 3.02%, while the shorter counterpart DTPT delivered a PCE up to 5.64%.  相似文献   

4.
Two donor–acceptor type fluoro-isoindigo based small molecule semiconductors are synthesized and their optical, electrochemical, thermal, and charge transport properties are investigated. The two molecular chromophores differ by their architecture, linear (M1) vs propeller-like (M2). Both molecules present a broad absorption in the visible range and a low optical HOMO–LUMO gap (∼1.6 eV). AFM images of solution-processed thin films show that the trigonal molecule M2 forms highly oriented fibrils after a few seconds of solvent vapor annealing. The materials are evaluated as electron donor components in bulk heterojunction organic solar cells using PC61BM as the electron acceptor. The devices based on the propeller-like molecule M2 exhibit a high open-circuit voltage (around 1.0 V) and a power conversion efficiency of 2.23%.  相似文献   

5.
Four different diketopyrrolopyrrole (DPP)-based small molecules (SMs) with A–D–A type structure were synthesized, where electron-donating unit (D) was systematically varied with different electron-donating power (thiophene vs. phenylene; thienothiophene vs. naphthalene) and different molecular planarity (bithiophene vs. thienothiophene; and biphenylene vs. naphthalene). The small molecules with weak donating unit (phenylene or naphthalene) have deeper HOMO energy levels than those with strong donating unit (thiophene or thienothiophene), and thus exhibit higher VOC. When the fused aromatic ring (thienothiophene or naphthalene) with planar molecular structure is introduced in SMs, the SMs exhibit high hole mobility and thus afford high JSC. As a result, the introduction of naphthalene (weak donating power and planar structure) enhances both VOC and JSC, resulting in a promising power conversion efficiency of 4.4%. This result provides a valuable guideline for rational design of conjugated small molecules for high performance organic solar cells.  相似文献   

6.
《Organic Electronics》2014,15(6):1138-1148
Two novel small molecular photovoltaic (PV) materials, BDPTBT and BDATBT were designed and synthesized, consisting of 5,6-bis-(octyloxy)benzo[c][1,2,5]thiadiazole (DOBT) as electron-withdrawing core (A), and triphenylamine (TPA) as electron-donating side group (D). Moreover, the benzene and ethynylbenzene as π-linkage were introduced to form donor–π-acceptor–π-donor (D–π-A–π-D) typed molecular structures, respectively. To fully investigate the linkage effect of a series of small molecules, two reference compounds BDCTBT and BDETBT were also studied systematically, consisting of 2-phenylacrylonitrile and styrene as π-linkage, respectively. As a result, the π-linkage units, benzene, styrene, ethynylbenzene and 2-phenylacrylonitrile played an important role in modifying molecular structure and improving PV performance. Bulk heterojunction (BHJ) solar cells based on BDPTBT/PC61BM and BDATBT/PC61BM yielded the power conversion efficiencies (PCEs) of 2.99% and 2.03%, respectively. Notably, BDATBT based device showed a high open-circuit voltage (Voc) of 1.03 V. Compared to the results we have reported previously, the reference devices based on BDCTBT/PC61BM and BDETBT/PC61BM with the optimized weight ratio showed dramatically enhanced PCEs of 4.84% and 3.40%, respectively, and BDCTBT based device showed a high Voc of 1.08 V. To our knowledge, the Voc of 1.08 V is the highest voltage reported to date for devices prepared from solution-processed small-molecule-donor materials, and the PCE of 4.84% is the highest efficiency reported so far for D–A–D-typed benzothiadiazole (BT)–TPA based solution-processed small molecules PV devices.  相似文献   

7.
To explore effects of acetylene-incorporation, acetylene-bridged D–A–D type small molecules ((HD/OD)-DPP-A-PY) using pyrene as a donor and diketopyrrolopyrrole as an acceptor were successfully synthesized and characterized. (HD/OD)-DPP-A-PY exhibited planar back-bone, conjugation extension, enhanced light absorption, and low HOMO energy level. Combined with the advanced properties, solution-processed OSCs based on a blend of HD-DPP-A-PY as a donor and [6,6]-phenyl-C71-butyric-acid-methyl-ester (PC70BM) as an acceptor exhibited PCEs as high as 3.15%.  相似文献   

8.
Two new oligothiophene-based small molecules, namely DRCN6T-F and DRCN8T-F, with 3,3′-difluoro-2,2′-bithiophene as the central building block and 2-(1,1-dicyanomethylene)-rhodanine as end groups, were designed and synthesized. Compared to their non-fluorinated counterparts DRCN6T and DRCN8T, DRCN6T-F and DRCN8T-F exhibit enhanced intermolecular interactions and lower HOMO energy levels. However, PCEs of 2.26% and 5.07% were obtained for DRCN6T-F and DRCN8T-F based optimized devices, respectively, lower than those of non-fluorinated molecules DRCN6T and DRCN8T. The relatively poor performance for the DRCN6T-F and DRCN8T-F were mainly caused by their low short-circuit current densities, due to their unfavorable morphologies and low charge carrier mobilities.  相似文献   

9.
In this work, we have designed and synthesized a new naphtho[1,2-b:5,6-b′]dithiophene-containing enlarged π-conjugated donor–acceptor (D–A) small molecule, NDT(TTz)2, for use in solution-processed organic photovoltaics. NDT(TTz)2, which contains a thiophene-bridged naphtho[1,2-b:5,6-b′]dithiophene as the central fused core and triphenylamine-flanked thiophene thiazolothiazole as a spacer, was synthesized via sequential Suzuki and Stille coupling reactions. The thermal, physiochemical, and electrochemical properties of NDT(TTz)2 have been evaluated by differential scanning calorimetry, thermogravimetry, UV–Vis spectroscopy, photoluminescence spectroscopy, X-ray diffraction, and cyclic voltammetry. As desired for photovoltaic applications, NDT(TTz)2 possesses good solubility, thermal stability, and a well-ordered, π–π stacked, crystallinity. The optical band gap and HOMO level of NDT(TTz)2 were determined to be 2.0 eV and −5.23 eV, respectively. In addition to organic thin film transistor studies, application of NDT(TTz)2 to preliminary photovoltaic devices has also been investigated by fabricating solution-processed bulk heterojunction solar cells together with PC71BM in a typical layered device structure, ITO/PEDOT:PSS/NDT(TTz)2:PC71BM/LiF/Al. Without extensive optimization of the device, NDT(TTz)2 in these devices shows a maximum power conversion efficiency of 1.44% under AM 1.5 illumination at a 100 mW/cm2 intensity.  相似文献   

10.
Two novel D–A–π–A metal free dyes with triphenylamine as donor, dithiophene-diketo-pyrrolo-pyrrole as acceptor unit, thiophene and phenyl π-conjugated bridges and a cyanoacetic acid as electron acceptor (TDPP1 and TDPP2 were denoted for thiophene and phenyl π-conjugated bridge, respectively) have been designed and used as sensitizers for DSSCs. Incorporation of dithiophene-diketo-pyrrolo-pyrrole, reduces the band gap significantly. The influence of π-conjugated bridge on optical and electrochemical properties were investigated. Results demonstrated that the absorption band of TDPP with thiophene π-conjugated bridge has red shifted due to the enhancement of electron donating ability of π-conjugated bridge. The DSSC based on TDPP1 shows prominent power conversion efficiency about 4.81%, which is higher that for TDPP2 (3.42%). The electrochemical impedance spectroscopy analysis reveal that the charge recombination resistance at the TiO2/dye/electrolyte interface for the DSSC based on TDPP1 is higher than that for TDPP2, which improves both Jsc and Voc. The PCE of the DSSC based on TDPP1 is further improved up to 6.34%, when deoxycholic acid (DCA) was employed as coadsorbant.  相似文献   

11.
Triarylamine-based dual-function coadsorbents containing a carboxylic acid acceptor linked by extended π-conjugation aryl linkers (e.g., phenylene: HC-A3, naphthalene: HC-A4 and anthracene: HC-A5) were newly designed and synthesized. They were used as coadsorbents in organic dye-sensitized solar cells (DSSCs) based on a porphyrin dye (hexyloxy-biphenyl-ZnP-CN-COOH (HOP)). For comparison, the π-conjugated phenyl linker (HC-A3) previously developed by our group was also used as a coadsorbent. The structural effects on the photophysical and electrochemical properties and DSSC performance were systematically investigated. As a result, the DSSCs based on HC-A4 and HC-5 displayed power conversion efficiencies (PCEs) of 8.2% and 5.1%, respectively, while the HC-A3-based DSSC achieved a PCE of 7.7%. In the case of HC-A4, both the short-circuit photocurrent densities (Jsc) and open-circuit voltages (Voc) of DSSCs were simultaneously improved to a large extent due to the more effective prevention of π−π stacking of organic dye molecules and the better light-harvesting effect at short wavelengths. The HC-A5-based DSSC exhibited a much lower short-circuit current (Jsc) and open-circuit voltages (Voc) compared to the HC-A4-based DSSC, due to the fact that the dihedral angle of the π-conjugated linkers was too high for electron injection into the TiO2 conduction band (CB) level. This had a reduced effect on preventing the π−π stacking of dye molecules, resulting in lower Jsc and Voc values.  相似文献   

12.
A serial of novel A-D-A type small molecules with BODIPY linked through alkynyl with various electron donor units such as fluorene, carbazole, benzodithiophene and phenothiazine, namely F-BDP, C-BDP, B-BDP and P-BDP, respectively, were designed and synthesized. Introducing the alkynyl bridge leads to extending the molecular absorption spectrum to the range of 320–700 nm with high molar extinction coefficients (105 cm−1 M−1) and strong fluorescence quenching. The molecules showed relatively low HOMO ranging from −5.02 to −5.24 eV as estimated from cyclic voltammetry measurements. Interestingly, B-BDP with BDT as donor exhibits more obviously red-shifted absorption in the solid state compared to F-BDP, C-BDP and P-BDP. Furthermore, the solution-processed bulk-heterojunction organic solar cell based on B-BDP/PC71BM present superior charge transport property and more favorable nanoscale morphology, resulting in a significant higher Jsc of 11.84 mA cm2 and FF than the other counterparts, thus achieved a higher PCE of 4.65%, which is one of the best values among the ever reported BODIPY based organic solar cells.  相似文献   

13.
《Organic Electronics》2014,15(9):2116-2125
Two D–A–D small molecules TDPP (FP)2 and TDPP (BuP)2 coded as CSDPP2 and CSDPP4 respectively were synthesized having same diketopyrrolopyrrole (DPP) as core acceptor and difluoro-phenyl (FP) and dibutyloxy phenyl (BuP) as different end donor units with broad absorption and suitable energy levels. We have used these small molecules as donor components along with the PC70BM as electron acceptor for the preparation of bulk heterojunction (BHJ) active layer in small molecule (SM) organic photovoltaics (OPV) test cells. The optimal power conversion efficiencies obtained with CSDPP2 and CSDPP4 are 2.26% and 3.23% when the BHJ active layer was cast from CF solvent. The PCE has been further enhanced up to 3.03% and 4.65% for CSDPP2 and CSDPP4 when the BHJ active layer was cast from CN/CF solvent. The enhancement in PCE has been explained in terms of change in crystallinity and nanoscale morphology and more balanced charge transport resulting from increased hole mobility.  相似文献   

14.
Donor–acceptor (D–A) type conjugated polymers have been developed to absorb longer wavelength light in polymer solar cells (PSCs) and to achieve a high charge carrier mobility in organic field-effect transistors (OFETs). PDTDP, containing dithienothiophene (DTT) as the electron donor and diketopyrrolopyrrole (DPP) as the electron acceptor, was synthesized by stille polycondensation in order to achieve the advantages of D–A type conjugated polymers. The polymer showed optical band gaps of 1.44 and 1.42 eV in solution and in film, respectively, and a HOMO level of 5.09 eV. PDTDP and PC71BM blends with 1,8-diiodooctane (DIO) exhibited improved performance in PSCs with a power conversion efficiency (PCE) of 4.45% under AM 1.5G irradiation. By investigating transmission electron microscopy (TEM), atomic force microscopy (AFM), and the light intensity dependence of JSC and VOC, we conclude that DIO acts as a processing additive that helps to form a nanoscale phase separation between donor and acceptor, resulting in an enhancement of μh and μe, which affects the JSC, EQE, and PCE of PSCs. The charge carrier mobilities of PDTDP in OFETs were also investigated at various annealing temperatures and the polymer exhibited the highest hole and electron mobilities of 2.53 cm2 V−1 s−1 at 250 °C and 0.36 cm2 V−1 s−1 at 310 °C, respectively. XRD and AFM results demonstrated that the thermal annealing temperature had a critical effect on the changes in the crystallinity and morphology of the polymer. The low-voltage device was fabricated using high-k dielectric, P(VDF-TrFE) and P(VDF-TrFE-CTFE), and the carrier mobility of PDTDP was reached 0.1 cm2 V−1 s−1 at Vd = −5 V. PDTDP complementary inverters were fabricated, and the high ambipolar characteristics of the polymer resulted in an output voltage gain of more than 25.  相似文献   

15.
SGT dyes containing various amine-typed donors as triphenylamine, bis-fluorenylamine and bis-phenothiazinylamine as the electron donor and a cyanoacrylic acid moiety as electron acceptor in D–π–A system, were developed to use in dye-sensitized solar cells (DSSCs). The SGT-102 dye containing bis-fluorenylamine had a better prevented charge recombination than other SGT dyes; leading to improvement in Voc. As a result, the conversion efficiency of 7.22% was achieved with a Jsc of 12.1 mA cm−2, Voc of 865 mV and a FF of 69.1 for the DSSC employing a dye containing the bulky bis-fluorenylamine donor unit, while the DSSC based on a dye containing the bulky bis-phenothiazinylamine donor unit showed a lower Jsc and Voc, leading to a lower efficiency of 5.16%, due to slow charge recombination associated with differently geometric structure orientations.  相似文献   

16.
《Organic Electronics》2014,15(7):1536-1544
New D–A–π–A carbazole dyes containing benzothiadiazole chromophores were designed and synthesized for application in dye-sensitized solar cells (DSSCs). The light-harvesting capabilities and photovoltaic performance of these dyes were investigated systematically through comparison of different π-bridges and acceptors. Compared with thiophene bridge, benzene bridge provides improved IPCE and VOC, which leads to better photoelectricity conversion efficiency. Dyes with cyanoacetic acid acceptor display superior photovoltaic properties though with shorter absorption maximum and lower molar absorption coefficient compared with dyes with rhodanine acetic acid acceptor. Therefore, dye with benzene bridge and cyanoacetic acid acceptor shows the most efficient photoelectricity conversion efficiency and has the maximum η value of 5.40% (VOC = 710 mV, JSC = 10.99 mA/cm2, and ff = 0.71) under simulated AM 1.5 irradiation (100 mW/cm2).  相似文献   

17.
Two molecules denoted as VC96 and VC97 have been synthesized for efficient (η = 6.13% @ 100 mW/cm2 sun-simulated light) small molecule solution processed organic solar cells. These molecules have been designed with the D1-A-D2-A-D1 structure bearing different central donor unit, same benzothiadiazole (BT) as π-acceptor and end capping triphenylamine. Moreover, the optical and electrochemical properties (both experimental and theoretical) of these molecules have been systematically investigated. The solar cells prepared from VC96:PC71BM and VC97:PC71BM (1:2) processed from CF (chloroform) exhibit a PCE (power conversion efficiency) of η = 4.06% (Jsc = 8.36 mA/cm2, Voc = 0.90 V and FF = 0.54) and η = 3.12% (Jsc = 6.78 mA/cm2, Voc = 0.92 V and FF = 0.50), respectively. The higher PCE of the device with VC96 as compared to VC97 is demonstrated to be due to the higher hole mobility and broader IPCE spectra. The devices based on VC96:PC71BM and VC97:PC71BM processed with solvent additive (3 v% DIO, 1,8-diiodooctane) showed PCE of η = 5.44% and η = 4.72%, respectively. The PCE device of optimized VC96:PC71BM processed with DIO/CF (thermal annealed) has been improved up to 6.13% (Jsc = 10.72 mA/cm2, Voc = 0.88 V and FF = 0.61). The device optimization results from the improvement of the balanced charge transport and better nanoscale morphology induced by the solvent additive plus the thermal annealing.  相似文献   

18.
《Organic Electronics》2014,15(8):1780-1790
We report the photophysical, electrochemical and theoretical properties of two dyes with same acceptor, π-linker and anchoring acceptor unit and different TPA (D1) and pyran (D2) donor central unit. The change in the central unit resulted in corresponding different photophysical and electrochemical properties. The dye sensitized solar cell fabricated using dye D1 showed the higher incident photon to current efficiency of 54%, a short circuit current (Jsc) of 11.86 mA/cm2, an open circuit voltage of 0.64 V, and fill factor (FF) of 0.68, corresponding an overall power conversion efficiency of 5.16% which is higher than that for D2 based DSSCs (4.42%). The difference in the PCE of DSSCs based on D1 and D2 is partly, due to the smaller amount of dye loading, higher dark current and charge recombination rate of D1 based DSSC. The electrochemical spectra of DSSCs demonstrated longer electron life time and charge recombination resistance and small charge transport resistance for D1 sensitized DSSC, results the higher PCE.  相似文献   

19.
《Organic Electronics》2014,15(3):818-823
A medium band gap D–A copolymer of indacenodithiophene (IDT) and fluorinated dithienylbenzotriazole (FBTA), PIDT-FBTA, was synthesized for the application as donor material in polymer solar cells (PSCs). PIDT-FBTA showed deeper highest occupied molecular orbital (HOMO) energy level due to the strong electron-withdrawing difluorine substitution on benzotriazole acceptor unit in the D–A copolymer. The PSCs based on PIDT-FBTA:PC70BM (1:3) exhibited a high Voc of 0.90 V and a power conversion efficiency (PCE) of 3.62% under the illumination of AM 1.5G, 100 mW cm−2. The device performance was further improved by methanol treatment with PCE increased to 4.90% and Voc increased to 0.92 V.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号