首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
A new approach for the synthesis of gold nanoparticles (Au NPs) via a simple and fast in-situ generation method using an amine-containing polymer (PN4N) as both stabilizer and reducing agent is reported. The application of the Au NPs-PN4N hybrid material as efficient interfacial layer in different types of solar cells was also explored. The synthesized Au NPs show good uniformity in size and shape and the Au NPs doped PN4N hybrid composites exhibit high stability. Amine-containing polymers are good cathode interfacial materials (CIMs) in polymer solar cells (PSCs) and planar heterojunction perovskite solar cells (PVKSCs). The performance of the PSCs with Au NPs doped PN4N CIMs is largely improved when compares to devices with pristine PN4N CIM due to the enhanced electronic properties of the doped PN4N. Furthermore, by incorporating larger Au NPs into PEDOT:PSS to enhance absorption of the light harvesting layer, power conversion efficiencies (PCEs) of 6.82% and 13.7% are achieved for PSC with PCDTBT/PC71BM as the light harvesting materials and PVKSC with a ∼280 nm-thick CH3NH3PbI3−xClx perovskite layer, respectively. These results indicate that Au NPs doped into both PEDOT:PSS and PN4N interlayers exhibited a synergistic effect in performance improvement of PSCs and PVKSCs.  相似文献   

2.
We use a low vacuum plasma assisted physical vapour deposition (PAPVD) method to deposit a Au nanoparticles (NPs) thin film onto the poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) layer in inverted poly(3-hexylthiophene):[6,6]-phenyl C61-butyric acid methylester (P3HT:PCBM) organic photovoltaic (OPV) devices. The Au NPs that incorporated into the PEDOT:PSS layer and reached to the active P3HT:PCBM layer can provide significant plasmonic broadband light absorption enhancement to the active layer. An approximately 50–90% improvement in short-circuit current density and in power convention efficiency has been achieved compared with those OPV devices without the plasmonic light absorption enhancement. This technique can be adopted and easily fit into most OPV device fabrication processes without changing other layers’ processing methods, morphologies, and properties.  相似文献   

3.
Poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonate) (PEDOT:PSS) is one of the most widely used hole transport layers (HTL) in inverted perovskite solar cells (PSCs) due to its simple solution-processed ability, high transparency, and conductivity. However, PEDOT:PSS-based devices suffer a lower open-circuit voltage (Voc) than devices with the conventional structure. To address this issue, we fabricated ammonia-modified PEDOT:PSS films by simply doping PEDOT:PSS solution with different ratio of ammonia. The acidity of PEDOT:PSS can be neutralized by the doped ammonia, which inhibits the ion-exchange reaction between PSS-H and CH3NH3I, thus retarding the reduction of the work function for PEDOT:PSS to some extent. As a result, a superior power conversion efficiency (PCE) of 15.5% was obtained for the device based on the ammonia-doped PEDOT:PSS HTL than that of the pristine PEDOT:PSS-based device. We ascribe the PCE enhancement to the increased Voc and fill factor (FF), which is attributed not only to the better energy-level alignment between the ammonia-modified PEDOT:PSS film and perovskite layer but also to the increased grain size and crystallinity of perovskite film.  相似文献   

4.
Solvent treatment has been widely used to improve the device performance of both Organic Light Emitting Diodes (OLEDs) and Polymer Solar Cells (PSCs). One of the proposed mechanisms is the modification of the buried PEDOT:PSS layer underneath the organic active layer by the permeating solvent. By measuring the lateral electric conductivity of the PEDOT:PSS layer, the 3 orders of magnitude's enhancement on the conductivity after solvent treatment confirms that the solvent permeates through the top organic active layer and modifies the PEDOT:PSS layer. Using a “peel-off” method, the buried PEDOT:PSS layer is fully exposed and studied by UV–vis spectra, XPS spectra, and c-AFM images. The data suggest that the permeating solvent dissolves PSS, changes PEDOT:PSS′ core-shell structure into a linear/coiled structure, and moves PSS from the bulk to the surface. As a result, PEDOT becomes more continuous in the bulk. The continuous conducting PEDOT-rich domains create percolating pathways for the current which significantly improve electric conductivity.  相似文献   

5.
Solution based inverted Organic Photovoltaic (OPVs) usually use Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) derivatives combined with pristine processing additives as hole selective contact on top of the hydrophobic conjugated polymer:fullerene active layer. In this study, PEDOT:PSS based hole selective contact is treated with two different boiling point additives, 2,5,8,11-tetramethyl-6-dodecyn-5,8-diol ethoxylate (Dynol) and Zonyl FS-300 fluorosurfactant (Zonyl). Although corresponding inverted OPVs using the above PEDOT:PSS:Additives show similar power conversion efficiency (PCE) values, the mechanisms of their implementation on inverted OPV operation are not identical. By understanding the synergistic effects of PEDOT:PSS processing additives on the hole selectivity of inverted OPVs we demonstrate a novel combination of PEDOT:PSS additives mixture as an effective route to further increase the hole selectivity, reliability andpower conversion efficiency of inverted OPVs.  相似文献   

6.
Polymer solar cells (PSCs) with poly(3‐hexylthiophene) (P3HT) as a donor, an indene‐C70 bisadduct (IC70BA) as an acceptor, a layer of indium tin oxide modified by MoO3 as a positive electrode, and Ca/Al as a negative electrode are presented. The photovoltaic performance of the PSCs was optimized by controlling spin‐coating time (solvent annealing time) and thermal annealing, and the effect of the spin‐coating times on absorption spectra, X‐ray diffraction patterns, and transmission electron microscopy images of P3HT/IC70BA blend films were systematically investigated. Optimized PSCs were obtained from P3HT/IC70BA (1:1, w/w), which exhibited a high power conversion efficiency of 6.68%. The excellent performance of the PSCs is attributed to the higher crystallinity of P3HT and better a donor–acceptor interpenetrating network of the active layer prepared under the optimized conditions. In addition, PSCs with a poly(3,4‐ethylenedioxy‐thiophene):poly(styrenesulfonate) (PEDOT:PSS) buffer layer under the same optimized conditions showed a PCE of 6.20%. The results indicate that the MoO3 buffer layer in the PSCs based on P3HT/IC70BA is superior to that of the PEDOT:PSS buffer layer, not only showing a higher device stability but also resulting in a better photovoltaic performance of the PSCs.  相似文献   

7.
It is an effective way to enhance device performance of polymer solar cells (PSCs) by using a tandem structure that combines two or more solar cells. For tandem PSCs, the buffer layer plays an important role in determining the device performance. The most commonly used buffer layers, such as PEDOT:PSS, TiOx, and ZnO, need thermal treatments that are not beneficial for reducing the fabrication complexity and cost of tandem PSCs. It is necessary to develop tandem PSCs fabricated by a thermal-treatment-free process. In this paper, we report high performance thermal-treatment-free tandem PSCs by developing PFN as buffer layers for both subcells. A power conversion efficiency (PCE) of 10.50% and a high fill factor of 72.44% were achieved by stacking two identical PTB7:PC71BM subcells. When adopting a rear PTB7-Th:PC71BM subcell, the highest PCE of 10.79% was further obtained for the tandem devices. The thermal-treatment-free process is especially applicable to flexible devices, in which plastic substrates are usually used.  相似文献   

8.
Since perovskite precursor solution is typically prepared from high boiling point solvents, understanding the effect of high boiling point solvent treatment of the PEDOT:PSS layer on the performance of perovskite solar cells is important for device processing optimization. In this paper, influence of the surface treatment of the PEDOT:PSS layer with high boiling point solvent, including N,N-dimethylformamide (DMF), dimethyl sulfoxide (DMSO), and ethylene glycol (EG), on the device performance of the perovskite solar cells was investigated. Increased conductivity was measured for the PEDOT:PSS film after solvent treatments, which was ascribed to the partial removal of PSS component from the PEDOT:PSS layer, as evidenced by the UV–vis absorption spectroscopy and XPS spectroscopy. In comparison with the reference cell, poorer device performance was obtained for the perovskite solar cells directly deposited on the solvent washed PEDOT:PSS film, which was ascribed to the increased pin hole density of the perovskite films. However, insertion of a thin PSSNa layer between the PEDOT:PSS layer and the perovskite layer greatly improved device performance, demonstrating that PSS-rich surface is favorite for the crystal growth of the perovskite film. Increased external quantum efficiency over 600–750 nm was measured for the cells based on solvent treated PEDOT:PSS layer, leading to a short circuit current and the consequent performance enhancement.  相似文献   

9.
Interface engineering is critical to the development of highly efficient perovskite solar cells. Here, urea treatment of hole transport layer (e.g., poly(3,4‐ethylene dioxythiophene):polystyrene sulfonate (PEDOT:PSS)) is reported to effectively tune its morphology, conductivity, and work function for improving the efficiency and stability of inverted MAPbI3 perovskite solar cells (PSCs). This treatment has significantly increased MAPbI3 photovoltaic performance to 18.8% for the urea treated PEDOT:PSS PSCs from 14.4% for pristine PEDOT:PSS devices. The use of urea controls phase separation between PEDOT and PSS segments, leading to the formation of a unique fiber‐shaped PEDOT:PSS film morphology with well‐organized charge transport pathways for improved conductivity from 0.2 S cm?1 for pristine PEDOT:PSS to 12.75 S cm?1 for 5 wt% urea treated PEDOT:PSS. The urea‐treatment also addresses a general challenge associated with the acidic nature of PEDOT:PSS, leading to a much improved ambient stability of PSCs. In addition, the device hysteresis is significantly minimized by optimizing the urea content in the treatment.  相似文献   

10.
One effective strategy to improve the performance of perovskite solar cells (PSCs) is to develop new hole transport layers (HTLs). In this work, a simple polyelectrolyte HTL, copper (II) poly(styrene sulfonate) (Cu:PSS), which comprises easily reduced Cu2+ counter-ions with an anionic PSS polyelectrolyte backbone is investigated. Photoelectron spectroscopy reveals an increase in the work function of the anode and upward band bending effect upon incorporation of Cu:PSS in PSC devices. Cu:PSS shows a synergistic effect when mixed with polyethylenedioxythiophene: polystyrenesulfonate (PEDOT:PSS) in various proportions and results in a decrease in the acidity of PEDOT:PSS as well as reduced hysteresis in completed devices. Cu:PSS functions effectively as a HTL in PSCs, with device parameters comparable to PEDOT:PSS, while mixtures of Cu:PSS with PEDOT:PSS shows greatly improved performance compared to PEDOT:PSS alone. Optimized devices incorporating Cu:PSS/PEDOT:PSS mixtures show an improvement in efficiency from 14.35 to 19.44% using a simple CH3NH3PbI3 active layer in an inverted (P-I-N) geometry, which is one of the highest values yet reported for this type of device. It is expected that this type of HTL can be employed to create p-type contacts and improve performance in other types of semiconducting devices as well.  相似文献   

11.
The photon harvesting of the photoactive layer within a multilayered polymer solar cells (PSCs) greatly affects the output electric power of the devices. For PSCs, the device performance is very sensitive to the photoactive layer thickness. Therefore, how to enhance the light absorption of the photoactive film with fixed thickness is still a big challenge. Plasmonic enhancement induced by noble metal nanoparticles has been proved to be an effective way to enhance light trapping inside the photoactive film without increasing the thickness of film. By incorporating Au decahedra into the poly(3,4-ethylenedioxythiophene): poly(4-styrenesulfonate) (PEDOT:PSS) anode buffer layer, high performance plasmonic PSCs based on P3HT:PC60BM and PBDT-TS1:PC70BM were fabricated and the light response of the PSCs are greatly improved in a broadband wavelength, resulting in a remarkable enhancement in short-circuit current density. The calculation results of finite difference time domain (FDTD) confirm that the plasmonic effects induce enhancement in device performance. Upon optimization, the best power conversion efficiency (PCE) of the device based on P3HT:PC60BM and PBDT-TS1:PC70BM reaches 4.14% and 10.29%, respectively, among the best values reported in literature. These results can provide valuable guidelines for the design of metal nanostructures for organic photovoltaic applications.  相似文献   

12.
The effects of gold (Au) nanoparticles (NPs) with different morphologies (star, rod, sphere) incorporated into buffer layer, poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), of polymer-based organic solar cells (OSCs) were investigated. Solar cells having gold nanoparticles exhibited significant improvement in device efficiency relative to the reference device. The observed improvement is most likely due to the surface plasmon and enhanced light reflection and scattering properties of the Au NPs. The power conversion efficiency (PCE) is increased ca. 29% with Au nanostars, ca. 14% with Au nanorods and 11% with Au nanospheres compared to the device with no Au NP (reference device). Au nanostars provide the strongest contribution to the efficiency among all NP morphologies studied as they have large size, sharp features, and strongest localized surface plasmon resonance effect associate with their morphology.  相似文献   

13.
We studied the effect of Au nanoparticles (NPs) on optical properties of composite films of poly(3,4-ethylenedioxythiophene): poly (styrenesulfonate) (PEDOT:PSS) mixed with Au NPs of 20, 40 and 60 nm in diameter by surface plasmon resonance (SPR) spectroscopy. The excitation wavelength of SPR redshifts with increasing the concentration of Au NPs in the Au/PEDOT:PSS composite films. The SPR spectra were simulated by using transfer matrix method (TMM) and effective medium approximation (EMA). The SPR wavelength redshift was ascribed to the film thickness increase of Au/PEDOT:PSS composites rather than effective permittivity variation of the composite films induced with Au NPs inclusion.  相似文献   

14.
Au-ZnO nanoripples (NRs) were synthesized by using a sol-gel method for utilization as an electron transport layer (ETL) in inverted organic photovoltaic (OPV) cells. Absorption spectra showed that the plasmonic broadband light absorption of the ZnO NRs was increased due to the embedded Au nanoparticles (NPs). In particular, as compared to regular inverted OPV cells with a ZnO NR ETL, the incident photon-to-current efficiency of the inverted OPV cells with a Au-ZnO NR ETL was significantly enhanced due to the localized surface plasmon resonance (LSPR) effect of the Au NRs. The enhancement of the short-circuit current density (10.05 mA/cm2) of the inverted OPV cells with a Au-ZnO NR ETL was achieved by the insertion of the Au NPs into the ZnO NRs. The power conversion efficiency (PCE) of the OPV cells with Au-ZnO NRs was 3.25%. The PCE of the inverted OPV cells fabricated with a Au-ZnO NR ETL was significantly improved by 20.37% in comparison with that of inverted OPV cells fabricated with a ZnO NR ETL. This improvement can mainly be attributed to an increase in light absorption in the active layer due to the generation of the LSPR effect resulting from the existence of the Au NPs embedded in the ZnO NRs.  相似文献   

15.
The power‐conversion efficiency (PCE) of single‐junction organic solar cells (OSCs) has exceeded 16% thanks to the development of non‐fullerene acceptor materials and morphological optimization of active layer. In addition, interfacial engineering always plays a crucial role in further improving the performance of OSCs based on a well‐established active‐layer system. Doping of graphitic carbon nitride (g‐C3N4) into poly(3,4‐ethylene‐dioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) as a hole transport layer (HTL) for PM6:Y6‐based OSCs is reported, boosting the PCE to almost 16.4%. After being added into the PEDOT:PSS, the g‐C3N4 as a Bronsted base can be protonated, weakening the shield effect of insulating PSS on conductive PEDOT, which enables exposures of more PEDOT chains on the surface of PEDOT:PSS core‐shell structure, and thus increasing the conductivity. Therefore, at the interface between g‐C3N4 doped HTL and PM6:Y6 layer, the charge transport is improved and the charge recombination is suppressed, leading to the increases of fill factor and short‐circuit current density of devices. This work demonstrates that doping g‐C3N4 into PEDOT:PSS is an efficient strategy to increase the conductivity of HTL, resulting in higher OSC performance.  相似文献   

16.
A solvent additive in PEDOT:PSS solution is one of many methods to improve the conductivity of the poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) films. We explore a new type of the solvent additive, namely tetramethylene sulfone (TMS), for the fabrication of the PEDOT:PSS conductive layer in the ITO/PEDOT:PSS/P3HT:PCBM/TiOx/Al polymer photovoltaic cells, in comparison to a more common dimethyl sulfoxide (DMSO) solvent additive. At optimal conditions, the TMS additive at 10 wt.% has been found to enhance the conductivity of pristine PEDOT:PSS films from 0.04 S/cm up to approximately 189 S/cm, compared with the highest conductivity for the case of the DMSO additive at 15 wt.% of 117 S/cm. Possible mechanisms of this conductivity enhancement, relating to the polymer conformation and the film morphology, have been investigated by Raman spectroscopy, X-ray diffraction, atomic force microscopy, and transmission electron microscopy. The performance of the polymer photovoltaic cells fabricated with the solvent additives PEDOT:PSS films follows a similar trend to the conductivity of the films as a function of the additive concentration. The additives mainly lead to greater short circuit current density (Jsc) of the photovoltaic cells. The highest power conversion efficiency (PCE) of 2.24% of the device has been obtained with the 10 wt.% TMS additive of, compared to the PCE of 1.48% for the standard device without solvent additive.  相似文献   

17.
The effect of the MoO3–PEDOT:PSS composite layer in the MoO3/Au/MoO3–PEDOT:PSS multilayer electrode on the power conversion efficiency of ITO-free organic solar cells (OSCs) was evaluated. The MoO3 (30 nm)/Au(12 nm)/MoO3–PEDOT:PSS (30 nm)/PEDOT:PSS structure showed ~7% more optical transmittance than the MoO3 (30 nm)/Au (12 nm)/MoO3(30 nm)/PEDOT:PSS structure at 550 nm wavelength. The OSCs using MoO3/Au/MoO3–PEDOT:PSS multilayer electrodes as anodes showed a considerable improvement in power conversion efficiency (PCE), from 1.84% to 2.81%, comparable to ITO based OSCs with PCE of 2.89%. This improvement is attributed to the suppression of MoO3 dissolution by the acidic hole transport layer (HTL) PEDOT:PSS on the MoO3/Au/MoO3–PEDOT:PSS multilayer electrode, resulting in high Jsc, Voc and FF of the OSCs. This composite based multilayer electrode was shown to be a promising replacement in ITO-free flexible optoelectronic devices.  相似文献   

18.
Wide wavelength inverted organic solar cells (IOSCs) were fabricated and characterized by doping the active layer with long wavelength absorbing tin (II) phthalocyanine (SnPc). The hole-transporting layer (HTL) comprised Ag nanoparticles (NPs)-embedded poly(3,4-ethylene dioxythiophene):poly(styrene sulfonate) (PEDOT:PSS). The short-circuit current density (Jsc) and power conversion efficiency (PCE) were considerably enhanced. It is attributed to that Ag NPs result in the enhancement of the scattering and reflection of light, leading to increase absorption efficiency in the active layer of IOSCs. Moreover, the SnPc-doped active layer exhibits a long wavelength absorption and prevents the active layer from degradation by PCBM clusters. The optimized IOSCs exhibited an open circuit voltage (Voc), Jsc, fill factor (F.F.), and PCE of 0.5 V, 10.34 mA/cm2, 45.33% and 2.33%, respectively, under simulated AM1.5G illumination at 100 mW/cm2.  相似文献   

19.
We present bulk heterojunction organic solar cells fabricated by spray‐casting both the PEDOT:PSS hole‐transport layer (HTL) and active PBDTTT‐EFT:PC71BM layers in air. Devices were fabricated in a (6 × 6) array across a large‐area substrate (25 cm2) with each pixel having an active area of 6.45 mm2. We show that the film uniformity and operational homogeneity of the devices are excellent. The champion device with spray cast active layer on spin cast PEDOT:PSS had an power conversion efficiency (PCE) of 8.75%, and the best device with spray cast active layer and PEDOT:PSS had a PCE of 8.06%. The impacts of air and light exposure of the active layer on device performance are investigated and found to be detrimental. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
Polymer solar cells (PSCs) possess the unique features of semitransparency and coloration, which make them potential candidates for applications in aesthetic windows. Here, the authors fabricate inverted semitransparent PSCs with high‐quality hybrid Au/Ag transparent top electrodes and fine‐tuned dielectric mirrors (DMs). It is demonstrated that the device color can be tailored and the light harvesting in the PSCs can be enhanced by matching the bandgap of the polymer donors in the active layer with the specifically designed maximum‐reflection‐center‐wavelengths of the DMs. A detailed chromaticity analysis of the semitransparent PSCs from both bottom and top (mirror) views is also carried out. Furthermore, the inverted semitransparent PSCs based on PTB7‐Th:PC71BM with six pairs of DMs demonstrate a maximum power conversion efficiency (PCE) of 7.0% with an average visible transmittance (AVT) of 12.2%. This efficiency is one of the highest reported for semitransparent PSCs, corresponding to 81.4% of the PCE from opaque counterpart devices. The device design and processing method are also successfully adapted to a flexible substrate, resulting in a device with a competitive PCE of 6.4% with an AVT of 11.5%. To the best of our knowledge, this PCE value is the highest value reported for a flexible semitransparent PSC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号