首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
致密层作为钙钛矿太阳电池的重要组成部分, 对其制备方法, 工艺及微结构等性质的研究对提高钙钛矿太阳电池的光伏性能具有重要影响. 本文利用介稳态的TiCl4醇水溶液作为前驱体溶液, 通过旋涂水解制备TiO2致密层, 并研究了前驱体溶液不同醇水比对致密层微结构及其相应太阳电池光伏性能的影响. 结果表明, 将2 mol.L-1的TiCl4的水溶液按醇水体积比3:1的比例用异丙醇稀释后所制备的TiO2致密层其厚度为126 nm, 且相应的太阳电池取得最高的光电转换效率10.6 %.  相似文献   

2.
In this study, chlorobenzene (CB) vapor assistant annealing (VAA) method is employed to make high quality perovskite films and produce high efficiency CH3NH3PbI3-xClx perovskite solar cells. The perovskite films made by this method present several advantages such as increased crystallinity, large grain size and reduced crystal boundaries compared with those prepared by thermal annealing (TA) method, which is beneficial to charge dissociation and transport in hybrid photovoltaic device. In addition, it is found that the CB VAA method could improve the surface property of perovskite film, resulting in a preferable coverage of PCBM layer and a better interfacial contact between perovskite film and upper PCBM film. Consequently, the short circuit current density (Jsc) of the devices is significantly increased, yielding a high efficiency of 14.79% and an average efficiency of 13.40%, which is 13% higher than that of thermal annealed ones. This work not only put forward a simple and efficient approach to prepare highly efficient perovskite solar cells but also provide a new idea to improve the morphology and interfacial contact in one integration step.  相似文献   

3.
对CuInSe2(CISe)薄膜太阳能电池的吸收层进行了非真空印刷制备技术研究。使用机械化学法合成CISe前驱粉末,采用ethyl-cellulose作为分散试剂配置印刷浆,使用丝网印刷技术沉淀CISe吸收层,对沉淀的吸收层进行N2氛围的快速热退火处理,使用XRD、UV、SEM及J-V等手段对CISe吸收层进行了分析表征。结果表明:简单高效的机械化学法可获得主(112)晶向CISe前驱粉末;经丝网印刷并干燥后的CISe吸收层中含有大量有机分散剂,退火可蒸发有机分散剂并有效改善CISe结晶度,但过长的退火会增加晶体缺陷;实验制得一典型CISe薄膜太阳能电池的短路电流密度、开路电压、填充因子和转换效率分别为4.48mA/cm2、355mV、0.41和0.65%。  相似文献   

4.
CZTSSe thin‐film absorbers were grown by stacked ZnS/SnS/Cu sputtering with compound targets, and the precursors were annealed in a furnace with a Se atmosphere. We controlled the thickness of the ZnS precursor layer for the CZTSSe thin films in order to reduce the secondary phases and to improve the performance of the devices. The optimal value of the ZnS precursor thickness was determined for the CZTSSe absorbers, and this configuration showed an efficiency of up to 9.1%. In this study, we investigated the depth profiles of the samples in order to determine the presence of secondary phases in the CZTSSe thin films by Raman spectroscopy and Kelvin probe force microscopy. Cu2SnSe3, ZnSe, and MoSe2 secondary phases appeared near the back contact, and the work function distribution of the CZTSSe thin‐film surface and the secondary phase distribution were different depending on the depths of the absorber layer. This phase characterization allows us to describe the effects that changes in the thickness of the ZnS precursor can have on the performance of the CZTSSe thin‐film solar cells. Although it is important to identify the phases, the effects of secondary phases and point defects are not yet fully understood, even in optimal devices. Therefore, phase identification that is based on the work function and the results obtained from the Raman spectra in terms of the depth profile are instrumental to improve the surface and interface of CZTSSe thin‐film solar cells. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
A high band‐gap (~1.55 eV) chalcopyrite compound film (CuInGaS2) was synthesized by a precursor solution‐based coating method with an oxidation and a sulfurization heat treatment process. The film revealed two distinct morphologies: a densely packed bulk layer and a rough surface layer. We found that the rough surface is attributed to the formation of Ga deficient CuInGaS2 crystallites. Because of the high band‐gap optical property of the CuInGaS2 absorber film, a solar cell device with this film showed a relatively high open circuit voltage (~787 mV) with a power conversion efficiency of 8.28% under standard irradiation conditions. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
Cu2ZnSnS4 (CZTS)‐based materials have a useful band gap and a high absorption coefficient; however, their power conversion efficiency is low compared with that of CdTe and Cu(In,Ga)Se2‐based solar cells. Two of the factors that strongly affect CZTS solar cell characteristics are the MoS2 layer and the presence of defects. In this study, Mo back‐contact layers were annealed to control MoS2 layer formation and the Na content in the Mo layer before the absorber precursor layer was deposited. The increase in oxygen content in the Mo layer suppressed MoS2 layer formation. In addition, the increase in Na diffusion during the initial stage of the absorber precursor deposition decreased the defect density in the absorber layer and in the absorber–buffer interface. These results were verified through measurements of the external quantum efficiency, the temperature dependence of the open‐circuit voltage (VOC), and admittance spectra. The current densities (JSC) and VOC, as well as the power conversion efficiencies, improved as the annealing temperature of the Mo layer increased, which suggests that CZTS solar cell characteristics can be improved by suppressing MoS2 layer formation and increasing Na content in the Mo layer before deposition of the absorber precursor layer. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
CdS thin films are a promising electron transport layer in PbS colloidal quantum dot (CQD) photovoltaic devices. Some traditional deposition techniques, such as chemical bath deposition and RF (radio frequency) magnetron sputtering, have been employed to fabricate CdS films and CdS/PbS CQD heterojunction photovoltaic devices. However, their power conversion efficiencies (PCEs) are moderate compared with ZnO/PbS and TiO2/PbS heterojunction CQD solar cells. Here, efficiencies have been improved substantially by employing solution‐processed CdS thin films from a single‐source precursor. The CdS film is deposited by a straightforward spin‐coating and annealing process, which is a simple, low‐cost, and high‐material‐usage fabrication process compared to chemical bath deposition and RF magnetron sputtering. The best CdS/PbS CQD heterojunction solar cell is fabricated using an optimized deposition and air‐annealing process achieved over 8% PCE, demonstrating the great potential of CdS thin films fabricated by the single‐source precursor for PbS CQDs solar cells.  相似文献   

8.
张妹玉  张宁  翁铭华  陈朝 《半导体光电》2014,35(2):233-236,240
通过沉积SiNx薄膜和H2退火表面处理工艺对低成本多晶硅太阳电池进行了处理,对表面处理前后的电池效率进行了对比测试,详细地研究了这两种表面处理工艺对电池的短路电流、开路电压、填充因子和转换效率的影响。实验发现,沉积了SiNx薄膜的低成本多晶硅太阳电池的效率在原有基础上提高了1.8%左右;而经过H2退火后的电池效率则出现了效率衰减。与此同时,对成本相对高的太阳能级多晶硅电池也进行了H2退火,与低成本多晶硅电池相比,其效率增加明显,与低成本太阳电池呈现了相反的现象。最后分析了两种表面处理工艺对电池性能造成影响的原因。  相似文献   

9.
A method for fabricating high‐efficiency Cu2ZnSn(S,Se)4 (CZTSSe) solar cells is presented, and it is based on a non‐explosive, low‐cost, and simple solution process followed by a two‐step heat treatment. 2‐Methoxyethanol was used as a solvent, and Cu, Zn, Sn, chloride salts, and thiourea were used as solutes. A CZTSSe absorber was prepared by sulfurising and then selenising an as‐coated Cu2ZnSnS4 (CZTS) film. Sulfurisation in a sulfur vapour filled furnace for a long time (2 h) enhanced the crystallisation of the as‐coated CZTS film and improved the stability of the CZTS precursor, and selenisation promoted further grain growth to yield a void‐free CZTSSe film. Segregation of Cu and S at the grain boundaries, the absence of a fine‐grain bottom layer, and the large grain size of the CZTSSe absorber were the main factors that enhanced the grain‐to‐grain transport of carriers and consequently the short‐circuit current (Jsc ) and efficiency. The efficiency of the CZTS solar cell was 5.0%, which increased to 10.1% after selenisation. For the 10.1% CZTSSe solar cell, the external quantum efficiency was approximately 80%, the open‐circuit voltage was 450 mV, the short‐circuit current was 36.5 mA/cm2, and the fill factor was 61.9%. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
Organic solar cells were fabricated by stacking aromatic amine and C60 layers. The energy conversion efficiency of these solar cells was low because of poor photoabsorption by these layers and short diffusion length of excitons. However, the photocurrent density was increased by about 3 times by the application of heat treatment to the stacked organic layers at 140 °C, and the maximum energy conversion efficiency reached 1.1 % under AM 1.5, 100 mW cm–2 simulated solar light. The internal quantum efficiency of the photocurrent after the annealing reached about 45 %. When the aromatic amine layer was about 100 nm thick, the organic layers after the annealing showed a wrinkled structure under an optical microscope. The annealing temperature needed for the formation of this structure was in good agreement with the temperature needed for the increase in the photocurrent. The morphological change caused by the annealing was attributed to infiltration of the amorphous aromatic amine compound into grain boundaries of the microcrystalline C60 layer, resulting in expansion of the C60 layer and the wrinkled structure of the organic layers. From observation by electron microscopy, the mixed form of these two compounds near the interface was found to be suited to solar cells because the C60 and aromatic amine phases wedge each other in a direction normal to two electrodes. However, the annealing slightly lowered photovoltage of the solar cell. This effect was attributed to a partial contact of the C60 layer with a counter electrode through the aromatic amine layer.  相似文献   

11.
Cu2ZnSnSe4 (CZTSe) thin film solar cells have been produced via co‐evaporation followed by a high‐temperature annealing. In order to reduce the decomposition of the CZTSe, a SnSe2 capping layer has been evaporated onto the absorber prior to the high‐temperature treatment. This eliminates the Sn losses due to SnSe evaporation. A solar cell efficiency of 5.1% could be achieved with this method. Moreover, the device does not suffer from high series resistance, and the dominant recombination pathway is situated in the absorber bulk. Finally, different illumination conditions (white light, red light, and yellow light) reveal a strong loss in fill factor if no carriers are generated in the CdS buffer layer. This effect, known as red‐kink effect, has also been observed in the closely related Cu(In,Ga)Se2 thin film solar cells. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
We report a unique nano-ridge structure of zinc oxide (ZnO) and its application in high performance inverted polymer solar cells. The ZnO nano-ridge structure was formed by a sol–gel process using a ramp annealing method. As the solvent slowly evaporated due to the low heating rate, there was sufficient time for the gel particles to structurally relax and pile up, resulting in a dense and undulated film. Nano-ridges with peak as high as 120 nm and valley to valley distance of about 500 nm were formed. This film provided an effective hole blocking layer and also an increased interfacial area for electron collection. An inverted bulk heterojunction polymer solar cell was fabricated using the ZnO nano-ridge film as the electron collecting layer. The device showed a high power conversion efficiency of 4.00%, an improvement of about 25% over similar solar cells made with a planar film of ZnO nanoparticles.  相似文献   

13.
We demonstrate that a thin seed layer of indium phthalocyanine chloride (ClInPc) annealed under mild conditions effectively controls the morphology of both post-annealing deposited ClInPc films and ClInPc:C60 mixed films, introducing the triclinic phase into the commonly monoclinic phase dominating film. ClInPc/C60 planar solar cells and ClInPc:C60 (1:1) planar-mixed solar cells with and without the triclinic phase were studied. Increased short circuit current (Jsc), fill factor (FF), external quantum efficiency (EQE) and internal quantum efficiency (IQE) of the devices containing triclinic phase is attributed to the enhanced absorption in the near infrared (NIR) region and decreased series resistance. The correlation between open circuit voltage (Voc) and dark saturation pre-exponential factor (Jso) was analyzed to investigate Voc loss upon annealing. The overall performance of device is considerably improved by introducing the triclinic phase of ClInPc.  相似文献   

14.
Multilayered polymer thin‐film solar cells have been fabricated by wet processes such as spin‐coating and layer‐by‐layer deposition. Hole‐ and electron‐transporting layers were prepared by spin‐coating with poly(3,4‐ethylenedioxythiophene) oxidized with poly(4‐styrenesulfonate) (PEDOT:PSS) and fullerene (C60), respectively. The light‐harvesting layer of poly‐(p‐phenylenevinylene) (PPV) was fabricated by layer‐by‐layer deposition of the PPV precursor cation and poly(sodium 4‐styrenesulfonate) (PSS). The layer‐by‐layer technique enables us to control the layer thickness with nanometer precision and select the interfacial material at the donor–acceptor heterojunction. Optimizing the layered nanostructures, we obtained the best‐performance device with a triple‐layered structure of PEDOT:PSS|PPV|C60, where the thickness of the PPV layer was 11 nm, comparable to the diffusion length of the PPV singlet exciton. The external quantum efficiency spectrum was maximum (ca. 20%) around the absorption peak of PPV and the internal quantum efficiency was estimated to be as high as ca. 50% from a saturated photocurrent at a reverse bias of ?3 V. The power conversion efficiency of the triple‐layer solar cell was 0.26% under AM1.5G simulated solar illumination with 100 mW cm?2 in air.  相似文献   

15.
钙钛矿薄膜的晶粒尺寸对器件性能影响很大。采用湿润性不同的空穴传输层以及不同浓度的CH3NH3I(MAI)溶液,使用热退火和溶剂气氛退火的方法制备出CH3NH3PbI3薄膜及相应电池。测量了不同制备条件的钙钛矿薄膜的X射线衍射、扫描电子显微镜、光致发光谱,以及器件的电流密度-电压曲线。结果表明,溶剂气氛退火可以有效地增大薄膜的晶粒尺寸,提高器件的电流密度;较高浓度的MAI能将PbI2完全转化为CH3NH3PbI3,增大晶粒尺寸;不湿润的功函数更高的空穴传输层有利于电池效率的提高。制备了最高效率为13.3%的CH3NH3PbI3钙钛矿电池,为制备更大晶粒的钙钛矿薄膜与更高效率的钙钛矿太阳电池奠定了基础。  相似文献   

16.
Herein, a 2D SnS2 electron transporting layer is reported via self‐assembly stacking deposition for highly efficient planar perovskite solar cells, achieving over 20% power conversion efficiency under AM 1.5 G 100 mW cm?2 light illumination. To the best of the authors' knowledge, this represents the highest efficiency that has so far been reported for perovskite solar cells using a 2D electron transporting layer. The large‐scaled 2D multilayer SnS2 sheet structure triggers a heterogeneous nucleation over the perovskite precursor film. The intermolecular Pb???S interactions between perovskite and SnS2 could passivate the interfacial trap states, which suppress charge recombination and thus facilitate electron extraction for balanced charge transport at interfaces between electron transporting layer/perovskite and hole transporting layer/perovskite. This work demonstrates that 2D materials have great potential for high‐performance perovskite solar cells.  相似文献   

17.
We here demonstrate the use of solution processed NiOx thin films as the hole transport layer (HTL) in a thiophene–quinoxaline copolymer:fullerene solar cell. The NiOx films, which are prepared by UV-ozone treating a nickel formate precursor, outperform the solar cells prepared in this study that use PEDOT:PSS as HTL. The power conversion efficiency improves from 5.3% to 6.1% when replacing PEDOT:PSS with NiOx. Unlike most conventional ways of fabricating solution processed NiOx HTLs, our method does not require high temperature (>300 °C). In fact, we were able to produce high performing NiOx HTLs without the use of any thermal annealing. X-ray photoelectron spectroscopy revealed that a mixture of oxides and hydroxides is formed as a result of the UV-ozone treatment, which differs in composition from those formed by high temperature annealing; UV-ozone treatment produces NiOOH, while only the high temperature annealing produces any significant amount of NiO. Contact potential difference (CPD) measurements reveal an increased work function for all UV-ozone treated NiOx films, consistent with the presence of NiOOH at the surface. The high work function of the UV-ozone treated NiOx films leads to an improved energy level matching between the donor and the HTL, resulting in higher fill factor and hole injection current.  相似文献   

18.
本文采用化学水浴法沉积CuxS薄膜,通过改变Cu元素比例研究其对碲化镉电池效率的影响。研究表明化学水浴法沉积的CuxS是非晶的,采用适当退火条件可以使其晶化,随着退火温度的提高,薄膜变得致密且结晶明显。CuxS薄膜厚度对电池性能有很大的影响,结果表明,随着CuxS薄膜厚度增加,电池性能先增加后减少。薄膜厚度为75nm时,CdS/CdTe电池性能最佳,达到了最高转化效率(η)为12.19%,填充因子(FF)为68.82%,开路电压(Voc)为820mV。  相似文献   

19.
We report enhanced performance of InGaN solar cells grown by metalorganic chemical vapor deposition through optimization of the annealing of the epitaxial wafer before device fabrication. We varied the annealing environment gas mixtures as well as temperatures to obtain the optimized annealing condition. It was found that the major improvement of the nitride solar cell efficiency after annealing is in the increase of the V oc. In addition, annealing at the reasonably moderate temperature of 550°C in O2 environment results in the highest-efficiency InGaN solar cell devices compared with devices annealed at different temperatures and in different gas environments.  相似文献   

20.
ZnS is a candidate to replace CdS as the buffer layer in Cu(In,Ga)Se2 (CIGS) solar cells for Cd‐free commercial product. However, the resistance of ZnS is too large, and the photoconductivity is too small. Therefore, the thickness of the ZnS should be as thin as possible. However, a CIGS solar cell with a very thin ZnS buffer layer is vulnerable to the sputtering power of the ZnO : Al window layer deposition because of plasma damage. To improve the efficiency of CIGS solar cells with a chemical‐bath‐deposited ZnS buffer layer, the effect of the plasma damage by the sputter deposition of the ZnO : Al window layer should be understood. We have found that the efficiency of a CIGS solar cell consistently decreases with an increase in the sputtering power for the ZnO : Al window layer deposition onto the ZnS buffer layer because of plasma damage. To protect the ZnS/CIGS interface, a bilayer ZnO : Al film was developed. It consists of a 50‐nm‐thick ZnO : Al plasma protection layer deposited at a sputtering power of 50 W and a 100‐nm‐thick ZnO : Al conducting layer deposited at a sputtering power of 200 W. The introduction of a 50‐nm‐thick ZnO : Al layer deposited at 50 W prevented plasma damage by sputtering, resulting in a high open‐circuit voltage, a large fill factor, and shunt resistance. The ZnS/CIGS solar cell with the bilayer ZnO : Al film yielded a cell efficiency of 14.68%. Therefore, the application of bilayer ZnO : Al film to the window layer is suitable for CIGS solar cells with a ZnS buffer layer. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号