首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 390 毫秒
1.
Mo基合金粉末对Fe基非晶涂层耐蚀性能影响   总被引:2,自引:0,他引:2  
为了进一步提高Fe基非晶涂层的抗腐蚀性能,将不同比例Mo基合金粉末加入Fe基非晶粉末中,利用等离子喷涂技术获得涂层.通过XRD分析了涂层相组成,利用电化学分析和盐雾腐蚀等手段对涂层抗腐蚀性能进行测试.结果表明:加入Mo基合金粉末后等离子喷涂形成的涂层仍为非晶涂层.随着Mo基合金粉末加入,形成的涂层具有更低的腐蚀电流密度和较高的自腐蚀电位,同时存在较宽的钝化区域.当加入量增加20%时,腐蚀电流和电位不再发生明显变化,说明适量Mo基合金粉末加入能提高Fe基非晶涂层抗腐蚀性能.  相似文献   

2.
目的通过优化涂层制备工艺,制备致密的Fe基非晶合金涂层,以提高非晶合金涂层的耐磨性。方法采用活性燃烧高速燃气超音速火焰喷涂(AC-HVAF)技术,通过工艺优化,制备了组织致密的Fe基非晶合金涂层。利用场发射扫描电子显微镜、X射线衍射仪、维氏显微硬度计、摩擦磨损试验机、三维光学轮廓仪等设备,对非晶合金涂层的组织结构、摩擦性能和磨损机制进行了深入分析。结果 Fe基非晶合金涂层呈现典型的非晶结构,涂层厚度在300μm左右,涂层的平均显微硬度值高达1000HV0.1。在干摩擦试验条件下,Fe基非晶合金涂层的磨损量远低于304不锈钢材料,磨损率是304不锈钢基体的1/3~1/2。Fe基非晶合金涂层的磨损机制以疲劳磨损为主,伴随着氧化磨损。氧化磨损主要是由干摩擦过程中产生的摩擦热导致,氧化磨损加速了片层剥落。结论 Fe基非晶合金涂层孔隙率的降低和非晶相含量的提高,有利于稳定摩擦系数和改善涂层的耐磨损性能。  相似文献   

3.
为研究强氧化环境中,显微结构和相组成对Fe基非晶/纳米晶复合涂层的腐蚀腐蚀性能的影响,采用大气等离子喷涂(APS)技术,在1Cr18Ni9Ti不锈钢基体上喷涂制得具有不同微结构和相组成的Fe基非晶/纳米晶的复合涂层。采用XRD、SEM、TEM和DSC等检测方法对涂层的组织和相组成、晶化行为、晶化程度、内部的孔隙等微观结构进行表征。采用电化学法研究具有不同微结构和相组成的涂层在30%H2O2 (质量分数,下同)溶液中的腐蚀行为,探讨Fe基非晶/纳米晶复合涂层在强氧化环境中的腐蚀机理。研究表明,Mo3Si和Fe5Si3相的形成使得涂层耐腐蚀性能明显降低。  相似文献   

4.
一种新型致密Fe基非晶涂层的制备与耐磨性能   总被引:1,自引:0,他引:1  
采用活性燃烧高速燃气(AC-HAVF)喷涂技术在AISI 1045低碳钢基体上制备了一种新型Fe40Cu8Cr15Mo14C15B6Y2非晶合金涂层,通过XRD、SEM、摩擦磨损试验机等研究了涂层的微观结构及其摩擦磨损行为。研究表明,Fe40Cu8Cr15Mo14C15B6Y2涂层的厚度可达400μm,涂层基本由非晶相组成,且与基体结合良好,结构致密,孔隙率为1.2%。该Fe基非晶涂层具有较高的维氏硬度达1038 HV,极低的磨损量,约为基体AISI 1045低碳钢的1/4。在干摩擦条件下,涂层易发生层状剥落磨损。同时,摩擦界面的局部接触部位产生高的闪温,使涂层表面形成氧化膜,随着摩擦过程中氧化的不断进行,当氧化膜生长到某一临界厚度时,由于其本身脆性会最终破裂,形成氧化磨屑,进一步加剧涂层的磨损。  相似文献   

5.
Fe基非晶纳米晶涂层在油润滑条件下的耐磨损性能   总被引:1,自引:1,他引:0  
采用自动化高速电弧喷涂技术在AZ91镁合金基体上制备了厚度约为300μm的Fe基非晶纳米晶涂层。研究了Fe基非晶纳米晶涂层在油润滑条件下,不同速度(180r/min、300r/min、600r/min、900r/min、1200r/min)、载荷(2.5N、5N、10N、20N、30N)对涂层的摩擦磨损行为。采用扫描电镜、能谱分析仪、X射线衍射仪和透射电镜对涂层的组织结构进行了表征,利用纳米压痕仪对涂层的力学性能进行了分析。试验结果表明:Fe基非晶纳米晶涂层组织均匀、结构致密,氧化物含量和孔隙率低,主要由非晶相和纳米晶相组成;涂层具有较高的硬度(12.03GPa)和弹性模量(197.1GPa)。在载荷为30N、速度为300r/min、磨损时间为900s条件下,其相对耐磨性是3Cr13涂层的3倍。Fe基非晶纳米晶涂层的磨损失效机制为脆性疲劳剥落。  相似文献   

6.
采用YAG脉冲激光器对电弧喷涂Fe基非晶涂层进行激光重熔处理。通过X-ray、SEM、冲蚀磨损和硬度测量仪等检测手段,研究非晶合金涂层在重熔后的组织结构、硬度和抗冲蚀性能的变化。结果表明:电弧喷涂铁基非晶合金在激光重熔后发生晶化,重熔层非晶含量随功率升高而降低。激光重熔基本消除了非晶涂层的层状结构、残余的气孔和裂纹,平整了涂层表面,提高了涂层韧性,显著改善了涂层的抗冲蚀性能。对喷涂1层的非晶涂层进行重熔时,重熔层的冲蚀磨损量约为喷涂层的1/10,约为基体Q345的1/5。对喷涂5层的非晶涂层进行重熔时,选择0. 1 kW低功率有利于获得较好的抗冲蚀性能。当涂层较厚而激光重熔未熔透时,涂层内应力会随激光功率增大而升高,并导致涂层开裂。当5层非晶涂层被熔透时,抗冲蚀性能显著提高。  相似文献   

7.
目的提高电弧喷涂含非晶相Fe基涂层的抗冲蚀及耐腐蚀性能。方法采用YAG脉冲激光器对电弧喷涂含非晶相Fe基涂层进行激光重熔处理。通过X-ray、SEM、冲蚀磨损和电化学等检测手段,研究该涂层重熔后的组织结构、冲蚀磨损性能和耐腐蚀性能。结果电弧喷涂含非晶相Fe基涂层经激光重熔后发生了晶化,并随着功率的增加,非晶含量降低,硬度也降低。重熔后,涂层与基体的结合方式由之前的机械咬合转变为冶金结合,涂层的致密度明显提高,组织缺陷减少。与喷涂层相比,0.3k W激光重熔涂层的抗冲蚀性能在30°攻角下可提高3倍,在90°攻角下可提高将近6倍。重熔层的冲蚀磨损机制在低冲角时以显微切削为主,高冲角时则以挤压破碎为主。随着激光功率的增加,重熔涂层的抗冲蚀性能降低。同时,在3.5%NaCl溶液中,重熔层的耐蚀性能随重熔激光功率的提高而提高,并且重熔层的腐蚀电流密度比喷涂层明显降低。结论激光重熔不但改善了电弧喷涂含非晶相Fe基涂层与基体间的结合状态,同时也增强了涂层的耐蚀和耐磨性能,是一种有效提升涂层性能的后处理工艺。  相似文献   

8.
利用先进的AC-HAVF(活性燃烧高速燃气)喷涂技术制备了Fe基非晶纳米晶涂层,研究了其微观组织、热稳定性以及耐磨耐蚀性能.试验结果表明:涂层主要由FeNi3、Fe2B和Ni4B3相组成;涂层与基体结合很好,涂层的孔隙率约为1.8 %;涂层表面硬度分布不是均匀,最高可达1 570 HV,平均硬度为1 361.1 HV;涂层具有优异的耐磨性能,其磨损体积是0Cr13Ni5Mo不锈钢的0.155倍,涂层的磨损机理主要是疲劳磨损;所获得的非晶纳米晶涂层在649.6 ℃以下使用,不会发生晶化反应,有很好的热稳定性.  相似文献   

9.
等离子喷涂制备铁基非晶涂层及其耐磨性   总被引:1,自引:0,他引:1  
采用等离子喷涂的方法制备铁基非晶涂层,并对不同喷涂功率制备涂层的组织和耐磨性进行了分析。结果表明,3种功率制备涂层表面致密、孔隙率低,且具有较高的热稳定性、硬度和耐磨性。当喷涂功率为30 k W时,涂层非晶程度高;喷涂功率为35和40 k W时,涂层中有Fe2B和Mo6Co6C晶相出现,随喷涂功率增加,涂层硬度和摩擦因数升高,35 k W制备涂层的耐磨性最好。  相似文献   

10.
利用新型超音速火焰喷涂(AC-HVAF)技术,在304不锈钢基体上制备了Fe49.7Cr18Mn1.9Mo7.4W1.6B15.2C3.8Si2.4Fe非晶合金涂层。利用X射线衍射仪、场发射环境扫描电镜、显微维氏硬度仪、动态极化曲线、电化学阻抗谱研究了非晶合金涂层的结构、硬度、耐腐蚀性能以及电极反应动力学过程。通过与304不锈钢的对比,研究了Fe基非晶合金在中性介质下的腐蚀行为。结果表明,该Fe基非晶合金涂层具有较高的非晶含量,较均匀的组织,较高的硬度和在氯化钠溶液中较高的耐腐蚀性能。  相似文献   

11.
采用电火花沉积技术在45Mn2钢基材表面沉积了Invar、Invar/非晶及Invar/非晶/Invar涂层,通过X射线衍射仪(XRD)、扫描电镜(SEM)、摩擦磨损试验仪和电化学工作站等分析了沉积层的组织结构、摩擦磨损和电化学腐蚀性能。结果表明,制备的涂层致密、均匀,与基材呈冶金结合。采用Invar合金打底,获得了约60 μm厚度的无显著裂纹Invar/非晶/Invar涂层。Invar涂层为FCC固溶体结构,Invar/非晶和Invar/非晶/Invar涂层为非晶/固溶体复相结构。Invar、Invar/非晶和Invar/非晶/Invar沉积层的平均硬度分别为176.6、 757.7和772.8 HV0.1,摩擦因数分别为0.44、0.21和0.19。提高沉积层非晶含量可提高硬度,降低摩擦因数,提高耐磨性。沉积层在3.5%NaCl溶液中没有明显的钝化现象,Invar、Invar/非晶及Invar/非晶/Invar涂层的自腐蚀电位分别为-0.74、 -0.54、-0.34和-0.31 V,自腐蚀电流密度分别为7.08、5.15、3.78和3.11 μA·cm-2。电火花沉积的Invar/非晶/Invar涂层致密、均匀、无裂纹,可极大提高45Mn2钢基体表面的耐磨及耐蚀性能。  相似文献   

12.
利用激光熔覆技术,研究稀土氧化物CeO2的添加对铝钛复合熔覆层性能的影响。首先分析了搭接率对熔覆层微观组织、显微硬度及摩擦磨损性能的影响,然后在40%搭接率的条件下,研究了CeO2的添加量对熔覆层性能的影响。结果显示,当搭接率为40%时熔覆层的各项性能最佳,显微硬度为284.82 HV0.3,相比基体提高了106%;摩擦因数为0.440,相比基体降低了32%;磨损率也降到了0.0105 mm3·N-1·m-1;CeO2的添加使晶粒得到了细化,熔覆层的显微硬度和耐磨性都得了很大程度的提升,当CeO2的添加量为8%时,熔覆层整体性能最佳,显微硬度为305.58 HV0.3,相比未添加CeO2的情况下又提高了7.3%;摩擦因数与未添加前相差不大,但磨损率仅有0.0087 mm3·N-1·m-1,相比未添加CeO2的情况下又降低了17%。  相似文献   

13.
铁基非晶合金涂层制备及应用现状   总被引:2,自引:2,他引:0  
综述了铁基非晶涂层的制备技术、成形特征及显微结构,发现随着喷涂热输入的增大,涂层结构更致密,孔隙率下降,但是涂层中非晶含量降低,含氧量增加。概述了铁基非晶涂层的腐蚀性能、腐蚀行为、磨损机制的进展,并总结了铁基非晶涂层当前的工程应用现状,认为铁基非晶涂层的腐蚀性能取决于涂层化学成分和显微结构的均匀性。非晶含量越高,涂层的耐蚀耐磨性能越好;非晶的孔隙率越低,涂层的耐蚀耐磨性能更优异。但是非晶涂层的点蚀规律及机理尚未形成统一认识。依据非晶涂层的研究现状,提出了非晶涂层在制备、性能及相关机理方面存在的问题,展望了铁基非晶涂层的应用前景。  相似文献   

14.
为探究激光熔覆再制造修复工艺对盾构机密封跑道磨痕的修复效果,采用送粉式激光熔覆工艺在42CrMo钢基体表面制备了Fe55铁基自熔合金涂层。基于L16(43)正交试验探究了激光功率、熔覆速率和搭接率对涂层表面形貌、横截面特征参数、稀释率、显微组织、硬度的影响规律和作用机理。极差分析表明,稀释率随激光功率和熔覆速率的增加均呈上升趋势,其中激光功率对涂层硬度影响最大,最大涂层硬度约为基体硬度的2.15倍。Fe55涂层的摩擦因数较基体明显降低,涂层耐磨性优良,其磨损体积较基体降低1.09×10-2 mm3,主要磨损机制为磨粒磨损和疲劳磨损。  相似文献   

15.
采用激光合金化技术在球墨铸铁QT600-3表面制备铁基合金化层,采用扫描电镜(SEM)、X射线衍射(XRD)、Raman光谱仪、显微硬度计和高温摩擦磨损试验等方法研究了不同激光扫描速度对铁基合金化层物相、微观结构、力学性能、常温和高温摩擦学性能的影响。研究结果表明,铁基合金化层与基体冶金结合良好、显微硬度高(高达830 HV0.1)、高温摩擦因数低至0.28、高温磨损率低至2.41×10-6 g·N-1·m-1。合金化层显微组织为奥氏体树枝晶+共晶碳化物,且随着扫描速度增加,组织逐渐细化,合金化层平均厚度减小,裂纹率升高,显微硬度先增加后减小,高温耐磨性能逐渐提高。铁基合金化层的高温磨损机制以磨粒磨损为主,同时还存在着疲劳磨损和氧化磨损。  相似文献   

16.
目的提高爆炸喷涂Fe基非晶涂层的摩擦学性能。方法采用液氮-室温循环处理喷涂粉末,通过爆炸喷涂制备原始粉末和处理粉末对应涂层。利用X射线衍射仪(XRD)检测涂层非晶相,用维氏显微硬度计和球-盘式摩擦试验机分别测试涂层的显微硬度和摩擦学性能,用附带能谱仪的扫描电子显微镜(SEM)表征样品的组织形貌及特征区域的元素含量。结果粉末经低温热循环处理后,仍为非晶态组织,且未发生开裂和破碎现象。与原始粉末制备的涂层相比,低温热循环处理粉末制备的涂层孔隙率由1.0%降低至0.4%;未熔颗粒明显减少,粉末铺展更加充分;显微硬度略有降低(由845.4HV降至813.5HV),但测试误差明显减小,威布尔分布拟合直线斜率由7.1196升高至9.6414;摩擦系数由0.76降低至0.73,磨损更加稳定;磨损率相近,均在10−6次方数量级。结论Fe基非晶粉末经低温热循环处理后,其对应涂层的组织更为均匀致密,显微硬度分布更为均匀,摩擦磨损性能更为稳定,磨损机制由原始粉末制备涂层的疲劳剥层磨损,转变为以氧化磨损和塑性变形主导。  相似文献   

17.
等离子弧堆焊铁基熔覆层组织结构与磨损行为   总被引:1,自引:0,他引:1       下载免费PDF全文
设计开发了一种铁基(含Cr,Mo,C,B,Si,Mn等元素)多元合金粉末,采用等离子弧堆焊(PTAW)技术在AISI304L不锈钢表面制备相应熔覆层,通过XRD,SEM,EDS及磨粒磨损试验机等对熔覆层微观组织结构和磨损行为等进行表征,并与传统NiCrBSi和NiCrBSi+25%WC粉末的PTAW熔覆层进行了对比研究.结果表明,所设计的铁基合金熔覆层成形良好,基体组织由Fe-Cr固溶体相与γ-Fe相构成,其间包裹着大量弥散分布的富钼硼化物和M23(B,C)6硬质相,对熔覆层组织能够起到有效的支撑和强化作用.铁基熔覆层的宏观硬度平均值高达64.2HRC,其相对耐磨性明显优于NiCrBSi+25%WC熔覆层,并达到NiCrBSi熔覆层的8倍以上.  相似文献   

18.
为提高电弧喷涂铁基非晶涂层的非晶含量及耐蚀性,以CO2为载流气体代替空气进行电弧喷涂试验,并研究喷涂距离对涂层组织与耐蚀性的影响。结果表明,喷涂层的厚度约为200 μm,涂层均主要由结晶相与非晶相构成。相比于空气介质,CO2抑制了晶化,从而提高了涂层中的非晶含量。同时,喷涂距离对涂层的组织及耐蚀性能有较大影响。随着喷涂距离的增加,涂层中的非晶含量减少。当喷涂距离为100 mm时,涂层具有最高的开路电位-0.498 V(vs SCE)及最小的自腐蚀电流密度4.281 μA/cm2,耐蚀性能最好;当喷涂距离为150 mm时,涂层的耐蚀性最差。提高非晶含量和组织的均匀性可增强该涂层的耐蚀性能。  相似文献   

19.
采用激光熔覆技术在27SiMn钢基体表面成功制备了不同La_2O_3含量的铁基JG-8合金复合涂层,系统地研究了添加La_2O_3对铁基JG-8合金复合涂层组织及性能的影响。利用X射线衍射仪(XRD)和配有能谱仪(EDS)的扫描电子显微镜(SEM)对铁基JG-8合金复合涂层的物相结构和显微组织进行分析测试,通过显微硬度仪和摩擦磨损试验机对铁基JG-8合金复合涂层的硬度以及摩擦学性能进行分析评估。结果表明,La_2O_3的添加可有效细化组织,使晶粒由原本的柱状晶转变为细小的胞状结构。铁基JG-8合金复合涂层的硬度随着La_2O_3含量的增加呈现先增大后减小的趋势,其中0.8%La_2O_3(质量分数)铁基JG-8合金复合涂层的硬度(HV0.3)(5327MPa)最高,与未添加La_2O_3的铁基JG-8涂层相比,0.8%La_2O_3铁基JG-8合金复合涂层的硬度提升了19.4%。在摩擦磨损过程中未添加La_2O_3的铁基JG-8涂层主要磨损机制为粘着磨损和疲劳磨损,0.8%La_2O_3铁基JG-8合金复合涂层的主要磨损机制为磨粒磨损,0.8%La_2O_3铁基JG-8合金复合涂层的体积磨损量最低,为27SiMn钢基体的22.9%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号