首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nonvolatile organic memory devices were fabricated utilizing a graphene oxide (GO) layer embedded between two polystyrene (PS) layers. Scanning electron microscope images of GO sheets sandwiched between two PS layers showed that the GO sheets were clearly embedded in the PS layers. Capacitance–voltage (CV) curves of the Al/PS/GO/PS/n-type Si devices clearly showed hysteresis behaviors with multilevel characteristics. The window margin of the nonvolatile memory devices increased from 1 to 7 V with increasing applied sweep voltages from 6 to 32 V. The cycling retention of the ON/OFF switching for the devices was measured by applying voltages between +15 and −15 V. While the capacitance of the memory devices at an ON state have retained as 230 pF up to 104 cycles, that at an OFF state maintained as 16 pF during three times of repeated measurements. The extrapolation of the retention data for the devices maintained up to 106 cycles. The operating mechanisms of the nonvolatile organic memory devices with a floating gate were described by the CV results and the energy band diagrams.  相似文献   

2.
A new approach is exploited to realize nonvolatile organic write-once–read-many-times (WORM) memory based on copper phthalocyanine (CuPc)/hexadecafluoro-copper-phthalocyanine (F16CuPc) p–n junction. The as-fabricated device is found to be at its ON state and can be programmed irreversibly to the OFF state by applying a negative bias. The WORM device exhibits a high ON/OFF current ratio of up to 2.6 × 104. An interfacial dipole layer is testified to be formed and destructed at the p–n junction interface for the ON and OFF states, respectively. The ON state at positive voltage region is attributed to the efficient hole and electron injection from the respective electrodes and then recombination at the CuPc/F16CuPc interface, and the transition of the device to the OFF state results from the destruction of the interfacial dipole layer and formation of an insulating layer which restricts charge carrier recombination at the interface.  相似文献   

3.
Organic-based devices with an 8 × 8 array structure using titanium dioxide nanoparticles (TiO2 NPs) embedded in poly(9-vinylcarbazole) (PVK) film exhibited bistable resistance states and a unipolar nonvolatile memory effect. TiO2 NPs were a key factor for realizing the bistability and the concentration of TiO2 NPs influenced ON/OFF ratio. From electrical measurements, switching mechanism of PVK:TiO2 NPs devices was closely associated with filamentary conduction model and it was found that the OFF state was dominated by thermally activated transport while the ON state followed tunneling transport. PVK:TiO2 NPs memory devices in 8 × 8 array structure showed a uniform cell-to-cell switching, stable switching endurance, and a high retention time longer than 104 s.  相似文献   

4.
A series of aromatic poly(ether imide)s, AZTA-PEIs containing triphenylamine and 1,2,4-triazole moieties are prepared and characterized. All the polymers with inherent viscosity from 0.58 to 1.1 dL/g show glass transition temperatures in the range of 250–278 °C. Resistive switching memory devices are constructed based on the processable poly(ether imide) (AZTA-PEIa). The device can be switched from the initial OFF state to the ON state under either positive or negative electrical sweep at about ±3.2 V. The ON state is nonvolatile and can maintain the high conducting state even turning off the electrical power and applying a reverse bias. The device fulfills the requirements of a write-once read-many times memory (WORM) with a high ON/OFF current ratio up to 105 and a long retention time in both ON and OFF states. The bistable switching effects of the polymer result from the conformation-coupled charge transfer from electron donors (triazole-substituted triphenylamine moieties) to electron acceptors (phthalimide moieties). By comparing with the memory behaviors of analogue polymers, the functions of ether and imide in the chemical polymer structure on the memory behaviors are discussed.  相似文献   

5.
Bistable electrical switching and nonvolatile memory devices with the configuration of indium tin oxide (ITO)/active layer/aluminum (Al) are reported. The active layer were prepared from the mixed compositions of 2-(4-tert-butylphenyl)-5-(4-biphenylyl)-1,3,4-oxadiazole, (PBD) and poly(N-vinylcarbazole) (PVK). The as-fabricated ITO/PBD:PVK/Al sandwiched devices exhibited rewriteable flash memory property. Due to the strong interaction between oxadiazole acceptor and carbazole donor, the devices demonstrate excellent performance. The memory devices can operate over a small voltage range, the absolute value of switching-on threshold voltage is less than 1 V and the switching-off threshold voltage is less than 3.5 V. The ON/OFF ratio of current switches in the range of 104–102 during the variation of applied voltage and the two different resistance states can be maintained over 4 h.  相似文献   

6.
Silicon-oxide–nitride-oxide–silicon devices with nanoparticles (NPs) as charge trapping nodes (CTNs) are important to provide enhanced performance for nonvolatile memory devices. To study these topics, the TiOxNy metal oxide NPs embedded in the HfOxNy high-k dielectric as CTNs of the nonvolatile memory devices were investigated via the thermal synthesis using Ti thin-film oxidized in the mixed O2/N2 ambient. Well-isolated TiOxNy NPs with a diameter of 5–20 nm, a surface density of ~3 × 1011 cm?2, and a charge trap density of around 2.33 × 1012 cm?2 were demonstrated. The writing characteristic measurements illustrate that the memory effect is mainly due to the hole trapping.  相似文献   

7.
《Organic Electronics》2007,8(4):401-406
A flexible polymer memory device is demonstrated in a sandwich structure of polypyrrole/P6FBEu/Au. Conductance switching at a voltage of about 4 V, with an ON/OFF current ratio up to 200, was observed in this flexible memory device. At the low-conductivity state, current density–voltage (JV) characteristics of the device were dominated by a charge injection current. At the high conductivity state, JV characteristics were dominated by a space-charge-limited current. Both the ON and OFF states are stable up to 106 read cycles at a read voltage of 1 V. The device can be used as a write-once read-many-times (WORM) memory with good electronic stability.  相似文献   

8.
《Organic Electronics》2014,15(8):1791-1798
An organic Write-Once-Read-Many (WORM) device based on poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) as the active layer was fabricated with an inverted architecture. Insertion of an ultrathin layer of poly(methylmethacrylate) (PMMA) between the bottom electrode and the PEDOT:PSS resulted in a systematic and substantial decrease in turn-on voltage, from 7.0 V to less than 1.0 V. An optimal thickness of the PMMA layer was found to yield the lowest consistent turn-on voltage of ∼0.8 V, with 0.5 V being the lowest value of all fabricated devices. The switching mechanism was attributed to filamentary doping of the PEDOT:PSS. Insertion of the PMMA acted to protect the underlying ZnO from being etched by the acidic PEDOT:PSS as well as to improve its wetting properties. Devices were demonstrated on both ITO and aluminum bottom electrodes, with aluminum yielding the highest ON/OFF ratios in the study. Owing to their inverted architecture, the devices demonstrated good stability, and the retention time of the ON-state was determined to be greater than twenty months while stored in air for devices with ITO bottom electrodes. In addition to deposition via spin-coating, blade-coating was demonstrated as a viable processing technique for applications requiring rapid or large-area manufacturing.  相似文献   

9.
We fabricated an 8 × 8 cross-bar array-type organic nonvolatile memory devices on twistable poly(ethylene terephthalate) (PET) substrate. A composite of polyimide (PI) and 6-phenyl-C61 butyric acid methyl ester (PCBM) was used as the active material for the memory devices. The organic memory devices showed a high ON/OFF current ratio, reproducibility with good endurance cycle, and stability with long retention time over 5 × 104 s on the flat substrate. The device performance remained well under the twisted condition with a twist angle up to ~30°. The twistable organic memory device has a potential to be utilized in more complex flexible organic device configurations.  相似文献   

10.
This research reported the transparent non-volatile write-once-read-many-times (WORM) memory behaviors of memory devices based on zinc oxide nanoparticles (ZnO NPs) embedded in an insulating poly(ethylene-co-vinyl acetate) (EVA), sandwiched between two ITO-coated flexible polyethylene naphthalate (PEN) substrates. The memory devices were fabricated employing a thermal roll lamination technique with the laminated-structure of PEN/ITO/EVA:ZnO NPs/ITO/PEN. The average transmittance of the laminated memory device was over 70% for an optical visible range of 400–800 nm. The maximum ON/OFF current ratio for the memory device was about 103. In addition, a reliability study for continuous read operations in a long time memory device is presented. The conductance switching mechanisms of the laminated memory device were analyzed using theoretical models on the basis of the experimental data.  相似文献   

11.
We report the hybrid inorganic–organic photovoltaics incorporating vanadium pentoxide (V2O5) as hole and zinc oxide (ZnO) nanoparticles (NPs) as electron extraction layers. This device demonstrates high open circuit voltage of about 0.89 V with considerably high short-circuit current density of 10.13 mA/cm2 along with fill factor of about 61.03%. Combining all these parameters, the power conversion efficiency is 5.53% which is higher compared to that (3.6%) of the cell without ZnO NPs.  相似文献   

12.
We propose all printed and highly stable organic resistive switching device (ORSD) based on graphene quantum dots (G-QDs) and polyvinylpyrrolidone (PVP) composite for non-volatile memory applications. It is fabricated by sandwiching G-QDs/PVP composite between top and bottom silver (Ag) electrodes on a flexible substrate polyethylene terephthalate (PET) at ambient conditions through a cost effective and eco-friendly electro-hydrodynamic (EHD) technique. Thickness of the active layer is measured around 97 nm. The proposed ORSD is fabricated in a 3 × 3 crossbar array. It operates switching between high resistance state (HRS) and low resistance state (LRS) with OFF/ON ratio ∼14 for more than 500 endurance cycles, and retention time for more than 30 days. The switching voltage for set/reset of the devices is ±1.8 V and the bendability down to 8 mm diameter for 1000 cycles are tested. The elemental composition and surface morphology are characterized by XPS, FE-SEM, and microscope.  相似文献   

13.
Nonvolatile memory devices based on a poly(4-vinylphenol) (PVP) layer containing Cu2ZnSnS4 (CZTS) nanoparticles were fabricated by using a simple spin-coating method. An energy dispersive spectrum revealed that the CZTS nanoparticles were Cu poor and Zn rich. Transmission electron microscopy images showed that the CZTS nanoparticles were randomly distributed in the PVP layer. Capacitance–voltage (CV) curves for Al/CZTS nanoparticles embedded in PVP layer/p-Si devices at 1 MHz showed a hysteresis with flat-band voltage (Vfb) shifts, which resulted from the existence of CZTS nanoparticles acting as trap sites in the memory devices. The magnitudes of the Vfb corresponding to the memory window shifts between 1.0 and 2.5 V, as determined from the CV data at 1 MHz, were dependent on the voltages applied to the memory device, indicative of multilevel characteristics for the memory effect. The operating mechanisms of the writing and the erasing processes for Al/CZTS nanoparticles embedded in PVP layer/p-Si devices are described on the basis of the CV results and the energy-band diagrams.  相似文献   

14.
We have modeled and characterized scaled Metal–Al2O3–Nitride–Oxide–Silicon (MANOS) nonvolatile semiconductor memory (NVSM) devices. The MANOS NVSM transistors are fabricated with a high-K (KA = 9) blocking insulator of ALD deposited Al2O3 (8 nm), a LPCVD silicon nitride film (8 nm) for charge-storage, and a thermally grown tunneling oxide (2.2 nm). A low voltage program (+8 V, 30 μs) and erase (?8 V, 100 ms) provides an initial memory window of 2.7 V and a 1.4 V window at 10 years for an extracted nitride trap density of 6 × 1018 traps/cm3 eV. The devices show excellent endurance with no memory window degradation to 106 write/erase cycles. We have developed a pulse response model of write/erase operations for SONOS-type NVSMs. In this model, we consider the major charge transport mechanisms are band-to-band tunneling and/or trap-assisted tunneling. Electron injection from the inversion layer is treated as the dominant carrier injection for the write operation, while hole injection from the substrate and electron injection from the gate electrode are employed in the erase operation. Meanwhile, electron back tunneling is needed to explain the erase slope of the MANOS devices at low erase voltage operation. Using a numerical method, the pulse response of the threshold voltages is simulated in good agreement with experimental data. In addition, we apply this model to advanced commercial TANOS devices.  相似文献   

15.
We report the application of reduced graphene oxide, using vitamin C as reducing agent, to make a composite with poly(vinyl phenol) as the active layer of write-once–read-many times memory devices. These devices present a high ON/OFF current ratio of 105 when read at 1 V, retain the information for a long time maintaining the ON/OFF current ratio constant, and require low energy for performing at 5 V the memory write (less than 10?8 J cm?2 device active area) and read operations.  相似文献   

16.
The present study focused on the development of zinc oxide nanoparticles (ZnO NPs) from the leaf extract of Murraya koenigii where zinc nitrate acts as the precursor. The X-ray diffraction (XRD) analysis showed the crystalline structure, and atomic force microscopy (AFM) showed the morphology of the ZnO NPs to be spherical with an average size of 12 nm. Functional groups of the sample were identified by using Fourier transmission infrared (FT-IR) spectroscopy. Their shape, structure and composition were assessed by Field emission scanning electron microscopy (FE-SEM) and energy dispersive spectroscopy (EDS). The results depicted that synthesized ZnO NPs were moderately stable and hexagonal shape, spherical shape with maximum particle size less than 100 nm. The green-synthesized ZnO NPs had prominent activities against Staphylococcus aureus (14.0±0.50 mm) and followed by Bacillus subtilis (13.8±0.76 mm) at the concentration of 200 µg/mL.  相似文献   

17.
The nonvolatile organic memory devices based on the tris(8-hydroxyquinolinato)aluminum (Alq3) emitting layer embedded with zinc oxide nanoparticles (ZnO-NPs) are reported. The devices have a typical tri-layer structure consisting of the Alq3/ZnO-NPs/Alq3 layers interposed between indium tin oxide (ITO) and aluminum (Al) electrodes. An external bias is used to program the ON and OFF states of the device that are separated by a four-orders-of-magnitude difference in conductivity. No significant degradation of the device is observed in either the ON or OFF state after continuous stress (∼105 s) and multicycle (∼103 cycles) testings. These nanoparticles behave as the charge trapping units, which enable the nonvolatile electrical bistability when biased to a sufficiently high voltage. Impedance spectroscopy, capacitance–voltage (CV) and current–voltage (IV) analysis are used to verify the possible physical mechanism of the switching operation. Moreover, it is found that the location of the ZnO-NPs could affect the memory and opto-electrical characteristics of the devices, such as the ON/OFF ratio, threshold voltage and turn-on voltage, which can be attributed to the influence of the ZnO-NPs and diffused Al atoms in the bulk of the Alq3 layer.  相似文献   

18.
Hybrid light emitting diodes (HyLED) with a structure of FTO/ZnO/F8BT/MoO3/Au/Ag is fabricated and the influence of surface roughness of cathode (FTO/ZnO) is investigated. The roughness of FTO could be decreased from 9.2 nm to 2.2 nm using a mild polishing process. The ZnO film, deposited by spray pyrolysis, functions as an electron injection layer. The roughness of the FTO/ZnO surface is found also highly dependent on the ZnO thickness. For thin ZnO films (20 nm), polishing results in better efficacy and power efficiency of LED devices, with nearly a two times improvement. For thick ZnO films (210 nm), the overall FTO/ZnO roughness is almost independent of the FTO roughness, hence both polished and unpolished substrates exhibit identical performance. Increasing ZnO thickness generally improves the electron injection condition, leading to lower turn on voltage and higher current and power efficiencies. However, for too large ZnO thickness (210 nm) the ohmic loss across the film dominates and deteriorates the performance. While the polished substrates show less device sensitivity to ZnO thickness and better performance at thin ZnO layer, best performance is obtained for unpolished substrates with 110 nm ZnO thickness. Larger interface area of ZnO/F8BT and enhanced electric filed at sharp peaks/valleys could be the reason for better performance of devices with unpolished substrates.  相似文献   

19.
ZnO nanoparticles were synthesized by calcining composites of zinc nitrate and poly(vinyl pyrrolidone) (PVP, molecular weight 30 000) at a mass ratio of 1:2 at 500 °C for 2 h. X-Ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) techniques were used to characterize the as-synthesized ZnO nanoparticles. The particles ranged in size from 30 to 50 nm. Infrared spectra of PVP and the PVP+Zn(NO3)2·6H2O composite revealed coordination between the carbonyl (C=O) of PVP and Zn2+ of zinc nitrate, which led to a uniform nanoparticle morphology. The gas-sensing properties and photocatalytic performance of the final product were systematically investigated. The results show that the ZnO nanoparticles exhibit both a high response for ethanol detection and excellent photocatalytic activity for degradation of methyl orange under UV irradiation for 30 min.  相似文献   

20.
The flexible organic ferroelectric nonvolatile memory thin film transistors (OFMTs) were fabricated on polydimethylsiloxane (PDMS) elastomer substrates, in which an organic ferroelectric poly(vinylidene-trifluoroethylene) and an organic semiconducting poly(9,9-dioctylfluorene-co-bithiophene) layers were used as gate insulator and active channel, respectively. The carrier mobility, on/off ratio, and subthreshold swing of the OFMTs fabricated on PDMS showed 5 × 10−2 cm2 V−1 s−1, 7.5 × 103, and 2.5 V/decade, respectively. These obtained values did not markedly change when the substrate was bent with a radius of curvature of 0.6 cm. The memory on/off ratio was initially obtained to be 1.5 × 103 and maintained to be 20 even after a lapse of 2000 s. The fabricated OFMTs exhibited sufficiently encouraging device characteristics even on the PDMS elastomer to realize mechanically stretchable nonvolatile memory devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号