首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
High-mobility organic single-crystal field-effect transistors of 3,11-didecyldinaphtho[2,3-d:2′,3′-d′]benzo[1,2-b:4,5-b′]-dithiophene (C10-DNBDT) operating at low driving voltage are fabricated by an all-solution process. A field-effect mobility as high as 6.9 cm2/V s is achieved at a driving voltage below 5 V, a voltage as low as in battery-operated devices, for example. A low density of trap states is realized at the surface of the solution-processed organic single-crystal films, so that the typical subthreshold swing is less than 0.4 V/decade even on a reasonably thick amorphous polymer gate dielectrics with reliable insulation. The high carrier mobility and low interface trap density at the surface of the C10-DNBDT crystals are both responsible for the development of the high-performance all-solution processed transistors.  相似文献   

2.
Electroless-plated gold and platinum films are used as source and drain electrodes in high-performance solution-processed organic field-effect transistors (OFETs), representing a promising large-area, near-room-temperature and vacuum-free technique to form low-resistance metal-to-semiconductor interfaces in ambient atmosphere. Developing non-displacement conditions using a Pt-colloidal catalyst for soft electroless plating, the electrodes are deposited on crystallized thin films of 2,9-didecyl-dinaphtho[2,3-b:2′,3′-f]thieno[3,2-b]thiophene (C10-DNTT) without significant damage to the semiconductor material. The top-contact OFETs show remarkable performance, with a mobility of 6.0 cm2 V?1 s?1. The method represents a practical fabrication technique to mass-produce circuitry arrays of nearly best-performing OFETs for the printed electronics industry.  相似文献   

3.
A series of derivatives based on annelated β-oligothiophenes were synthesized and characterized as active layer in organic field-effect transistors (OFETs). Highest field-effect mobility of 0.52 V?1 s?1 for 2,5-dibiphenyl-dithieno[2,3-b:3′,2′-d]thiophene (DBP-DTT), 2.2 cm2 V?1 s?1 for 2,5-distyryl-dithieno[2,3-b:3′,2′-d]thiophene (DEP-DTT), and 0.16 cm2 V?1 s?1 for 1,4-di[2-dithieno[2,3-b:3′,2′-d] thiophen-2-yl-vinyl]benzene (DDTT-EP) were obtained, while 2,5-diphenyl-dithieno [2,3-b:3′,2′-d]thiophene (DP-DTT) presents no field-effect behaviors. Their thermal, optical and electrochemical properties, topographical and X-ray diffraction patterns of films, and the single crystal structures were also investigated. With the end-capping groups changing in these materials, the intermolecular interactions could transform from S–S in DP-DTT to S–C in DBP-DTT, to S–π in DEP-DTT, and to the coexisting of S–S and S–π in DDTT-EP. According to the device performances and the results of transfer integral calculations, it was revealed that S–π intermolecular interaction benefits not only improving the mobility but also reducing the threshold voltage (VT), while S–S intermolecular interaction is not favorable for promoting the mobility.  相似文献   

4.
Bottom-gate, top-contact (inverted staggered) organic thin-film transistors with a channel length of 1 μm have been fabricated on flexible plastic substrates using the vacuum-deposited small-molecule semiconductor 2,9-didecyl-dinaphtho[2,3-b:2′,3′-f]thieno[3,2-b]thiophene (C10-DNTT). The transistors have an effective field-effect mobility of 1.2 cm2/V s, an on/off ratio of 107, a width-normalized transconductance of 1.2 S/m (with a standard deviation of 6%), and a signal propagation delay (measured in 11-stage ring oscillators) of 420 ns per stage at a supply voltage of 3 V. To our knowledge, this is the first time that megahertz operation has been achieved in flexible organic transistors at supply voltages of less than 10 V.  相似文献   

5.
Three 2,2-dicyanovinyl (DCV) end-capped A-π-D-π-A type oligothiophenes (DCV-OTs) containing dithieno[3,2-b:2′,3′-d]silole (DTSi), cyclopenta[1,2-b:3,4-b′]dithiophene (DTCP) or dithieno[3,2-b:2′,3′-d]pyrrole (DTPy) unit as the central donor part, mono-thiophene as the π-conjugation bridge were synthesized. The absorption spectroscopies, cyclic voltammetry of these compounds were characterized. Results showed that all these compounds have intensive absorption band over 500–680 nm with a LUMO energy level around −3.80 eV, which is slightly higher than that of [6,6]phenyl-C61-butyric acid methyl ester (PC61BM, ELUMO = −4.01 eV), but lower than that of poly(3-hexylthiophene) (P3HT, ELUMO = −2.91 eV). Solution processed bulk heterojunction “all-thiophene” solar cells using P3HT as electron donor and the above mentioned oligothiophenes as electron acceptor were fabricated and tested. The highest power conversion efficiency (PCE) of 1.31% was achieved for DTSi-cored compound DTSi(THDCV)2, whereas PTB7:DTSi(THDCV)2 based device showed slightly higher PCE of 1.56%. Electron mobilities of these three compounds were measured to be around 10−5 cm2 V−1 s−1 by space charge limited current method, which is much lower than that of PC61BM, and was considered as one of the reason for the low photovoltaic performance.  相似文献   

6.
C60 and picene thin film field-effect transistors (FETs) in bottom contact structure have been fabricated with poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) electrodes for a realization of mechanical flexible organic FETs. The C60 thin film FETs showed n-channel enhancement-type characteristics with the field-effect mobility μ value of 0.41 cm2 V?1 s?1, while the picene thin film FET showed p-channel enhancement-type characteristics with the μ of 0.61 cm2 V?1 s?1. The μ values recorded for C60 and picene thin film FETs are comparable to those for C60 and picene thin film FETs with Au electrodes.  相似文献   

7.
Low-voltage organic thin-film transistors (TFTs) based on four different small-molecule semiconductors (pentacene, DNTT (dinaphtho[2,3-b:2′,3′-f]thieno[3,2-b]thiophene), C10-DNTT and DPh-DNTT) were fabricated, and a detailed comparison of the semiconductor thin-film morphology, of the current-voltage characteristics of transistors with channel lengths ranging from 100 to 1 μm, and of the contact resistances is provided. The three thienoacene derivatives DNTT, C10-DNTT and DPh-DNTT all have significantly larger charge-carrier mobilities and smaller contact resistances than pentacene. In terms of the intrinsic channel mobility (determined using the transmission line method), C10-DNTT and DPh-DNTT perform quite similarly and notably better than DNTT, suggesting that the decyl substituents in C10-DNTT and the phenyl substituents in DPh-DNTT provide a similar level of enhancement of the charge-transport characteristics over DNTT. However, the DPh-DNTT TFTs have a substantially smaller contact resistance than both the DNTT and the C10-DNTT TFTs, resulting in notably larger effective mobilities, especially in transistors with very small channel lengths. For DPh-DNTT TFTs with a channel length of 1 μm, an effective mobility of 0.68 cm2/V was determined, together with an on/off ratio of 108 and a subthreshold swing of 100 mV/decade.  相似文献   

8.
Three new metal-free organic dyes FD13 with a planar dithieno[3,2-b:2′,3′-d]pyrrole unit as linker were synthesized and used for dye-sensitized solar cells with high molar extinction coefficients. In this work, dithieno[3,2-b:2′,3′-d]pyrrole was employed as π-conjugated bridge to construct A–π–d–π–A organic dyes, where 9,9-dihexyl-9H-fluorene was used as a donor, and cyanoacrylic acid as an electron acceptor. For a typical device, a solar energy conversion efficiency (η) of 6.36% based on FD2 was achieved under simulated AM 1.5 solar irradiation (100 mW cm?2) with a short-circuit photocurrent density (Jsc) of 13.76 mA cm?2, an open-circuit voltage (Voc) of 669 mV, a fill factor (ff) of 0.691. The results suggest that the organic dye with a functionalized dithienopyrrole unit is a promising candidate for DSSCs due to its high molar extinction coefficients.  相似文献   

9.
We report the synthesis, characterization and behavior in field-effect transistors of non-functionalized soluble diketopyrrolopyrrole (DPP) core with only a solubilizing alkyl chain (i.e. –C16H33 or –C18H37) as the simplest p-channel semiconductor. The characteristics were evaluated by UV–vis and fluorescence spectroscopy, X-ray diffraction, cyclic voltammetry (CV), thermal analysis, atomic force microscopy (AFM) and density functional theory (DFT) calculation. For top-contact field-effect transistors, two types of active layers were prepared either by a solution process (as a 1D-microwire) or thermal vacuum deposition (as a thin-film) on a cross-linked poly(4-vinylphenol) gate dielectric. All the devices showed typical p-channel behavior with dominant hole transports. The device made with 1D-microwiress of DPP-R18 showed field-effect mobility in the saturation region of 1.42 × 10?2 cm2/V s with ION/IOFF of 1.82 × 103. These findings suggest that the non-functionalized soluble DPP core itself without any further functionalization could also be used as a p-channel semiconductor for low-cost organic electronic devices.  相似文献   

10.
The initial stage of organic film growth is considered to be vital for the carrier transport in organic thin-film transistors with bottom gate configuration. The same topographies of 40 nm dinaphtho[2,3-b:2′,3′-f]thieno[3,2-b]thiophene (DNTT) films on para-sexiphenyl (p-6P) monolayer and bare SiO2 exhibited quite different field-effect mobilities, 1.9 and 0.1 cm2/V s, respectively. The further investigation indicated there were different growth behaviors at their initial stages of film growth. Column islands with high density were observed on SiO2, while lamina islands on p-6P monolayer due to the good diffusion ability and their good epitaxial relationship. The latter is beneficial to obtain high quality film with less boundaries and defects. The work demonstrated that the initial stage of film growth is an important factor to determine the device performance of organic transistors, which is significant to improve the device fabrication and optimize the device performance.  相似文献   

11.
We have demonstrated high performance inkjet-printed n-channel thin-film transistors (TFTs) using C60 fullerene as a channel material. Highly uniform amorphous C60 thin-film patterns were fabricated on a solution-wettable polymer gate dielectric layer by inkjet-printing and vacuum drying process. Fabricated C60 TFTs shows great reproducibility and high performance; field-effect mobilities of 2.2–2.4 cm2 V?1 s?1, threshold voltages of 0.4–0.6 V, subthreshold slopes of 0.11–0.16 V dec?1 and current on/off ratio of 107–108 in a driving voltage of 5 V. This is due to the efficient annealing process that extracting the solvent residue and the formation of low trap-density gate dielectric surface.  相似文献   

12.
《Organic Electronics》2007,8(6):718-726
High-performance pentacene field-effect transistors have been fabricated using Al2O3 as a gate dielectric material grown by atomic layer deposition (ALD). Hole mobility values of 1.5 ± 0.2 cm2/V s and 0.9 ± 0.1 cm2/V s were obtained when using heavily n-doped silicon (n+-Si) and ITO-coated glass as gate electrodes, respectively. These transistors were operated in enhancement mode with a zero turn-on voltage and exhibited a low threshold voltage (< −10 V) as well as a low sub-threshold slope (<1 V/decade) and an on/off current ratio larger than 106. Atomic force microscopy (AFM) images of pentacene films on Al2O3 treated with octadecyltrichlorosilane (OTS) revealed well-ordered island formation, and X-ray diffraction patterns showed characteristics of a “thin film” phase. Low surface trap density and high capacitance density of Al2O3 gate insulators also contributed to the high performance of pentacene field-effect transistors.  相似文献   

13.
The electrical performance of triethylsilylethynyl anthradithiophene (TES-ADT) organic field-effect transistors (OFETs) was significantly affected by dielectric surface polarity controlled by grafting hexamethyldisilazane and dimethyl chlorosilane-terminated polystyrene (PS-Si(CH3)2Cl) to 300-nm-thick SiO2 dielectrics. On the untreated and treated SiO2 dielectrics, solvent–vapor annealed TES-ADT films contained millimeter-sized crystals with low grain boundaries (GBs). The operation and bias stability of OFETs containing similar crystalline structures of TES-ADT could be significantly increased with a decrease in dielectric surface polarity. Among dielectrics with similar capacitances (10.5–11 nF cm−2) and surface roughnesses (0.40–0.44 nm), the TES-ADT/PS-grafted dielectric interface contained the fewest trap sites and therefore the OFET produced using it had low-voltage operation and a charge-carrier mobility ∼1.32 cm2 V−1 s−1, on–off current ratio >106, threshold voltage ∼0 V, and long-term operation stability under negative bias stress.  相似文献   

14.
We have demonstrated top-gate polymer field-effect transistors (FETs) with ultra-thin (30–50 nm), room-temperature crosslinkable polymer gate dielectrics based on blending an insulating base polymer such as poly(methyl methacrylate) with an organosilane crosslinking agent, 1,6-bis(trichlorosilyl)hexane. The top-gate polymer transistors with thin gate dielectrics were operated at gate voltages less than ?8 V with a relatively high dielectric breakdown strength (>3 MV/cm) and a low leakage current (10–100 nA/mm2 at 2 MV/cm). The yield of thin gate dielectrics in top-gate polymer FETs is correlated with the roughness of underlying semiconducting polymer film. High mobilities of 0.1–0.2 cm2/V s and on and off state current ratios of 104 were achieved with the high performance semiconducting polymer, poly(2,5-bis(3-alkylthiophen-2yl)thieno[3,2-b]thiophene.  相似文献   

15.
We report the development of high-performance inkjet-printed organic field-effect transistors (OFETs) and complementary circuits using high-k polymer dielectric blends comprising poly(vinylidenefluoride-trifluoroethylene) (P(VDF-TrFE)) and poly(methyl methacrylate) (PMMA) for high-speed and low-voltage operation. Inkjet-printed p-type polymer semiconductors containing alkyl-substituted thienylenevinylene (TV) and dodecylthiophene (PC12TV12T) and n-type P(NDI2OD-T2) OFETs showed high field-effect mobilities of 0.1–0.4 cm2 V?1 s?1 and low threshold voltages down to 5 V. These OFET properties were modified by changing the blend ratio of P(VDF-TrFE) and PMMA. The optimum blend – a 7:3 wt% mixture of P(VDF-TrFE) and PMMA – was successfully used to realize high-performance complementary inverters and ring oscillators (ROs). The complementary ROs operated at a supplied bias (VDD) of 5 V and showed an oscillation frequency (fosc) as high as ~80 kHz at VDD = 30 V. Furthermore, the fosc of the complementary ROs was significantly affected by a variety of fundamental parameters such as the electron and hole mobilities, channel width and length, capacitance of the gate dielectrics, VDD, and the overlap capacitance in the circuit configuration.  相似文献   

16.
《Microelectronics Journal》2007,38(4-5):509-512
Top contact organic thin-film transistors (TC OTFTs) based on pentacene are fabricated. For improving the contact characteristics between the organic semiconductor thin-film and gold electrodes, we doped the starburst molecular 4,4′,4″-tris{N,(3-methylpheny)-N-phenylamino}-triphenylamine) (m-MTDATA), which is an excellent hole injection material for the organic light-emitting devices (OLEDs), into the interlayer contact with the electrodes. Compared with conventional TC OTFT, the performances of the organic transistor with the doped interlayer are improved. The field-effect mobility increases from 0.16 to 0.51 cm2/V s, and threshold voltage downshifts from –11 to –2.8 V for the linear region. The on/off current ratio is more than 104 when the gate voltage varies from 0 to –20 V. We ascribe the improvements to the doped interlayer for which the contact resistance is reduced and the hole injection is enhanced.  相似文献   

17.
Single crystal field-effect transistors (FETs) using [6]phenacene and [7]phenacene show p-channel FET characteristics. Field-effect mobilities, μs, as high as 5.6 × 10?1 cm2 V?1 s?1 in a [6]phenacene single crystal FET with an SiO2 gate dielectric and 2.3 cm2 V?1 s?1 in a [7]phenacene single crystal FET were recorded. In these FETs, 7,7,8,8-tetracyanoquinodimethane (TCNQ) was inserted between the Au source/drain electrodes and the single crystal to reduce hole-injection barrier heights. The μ reached 3.2 cm2 V?1 s?1 in the [7]phenacene single crystal FET with a Ta2O5 gate dielectric, and a low absolute threshold voltage |VTH| (6.3 V) was observed. Insertion of 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ) in the interface produced very a high μ value (4.7–6.7 cm2 V?1 s?1) in the [7]phenacene single crystal FET, indicating that F4TCNQ was better for interface modification than TCNQ. A single crystal electric double-layer FET provided μ as high as 3.8 × 10?1 cm2 V?1 s?1 and |VTH| as low as 2.3 V. These results indicate that [6]phenacene and [7]phenacene are promising materials for future practical FET devices, and in addition we suggest that such devices might also provide a research tool to investigate a material’s potential as a superconductor and a possible new way to produce the superconducting state.  相似文献   

18.
《Organic Electronics》2014,15(4):920-925
Gelatin is a natural protein, which works well as the gate dielectric for N,N-dioctyl-3,4,9,10-perylene tetracarboxylic diimide (PTCDI-C8) organic field-effect transistors (OFETs). An aqueous solution process was applied to form the gelatin gate dielectric on poly(ethylene terephthalate) (PET) by spin-coating and subsequent casting. The field-effect mobility in the saturation regime (μFE,sat) and the threshold voltage (VT) values of a typical 40 nm PTCDI-C8 OFET are (0.22 cm2 V−1 s−1, 55 V) in vacuum and (0.74 cm2 V−1 s−1, 2.6 V) in air ambient. The maximum voltage shift in hysteresis is also reduced from 10 V to 2 V when the operation environment for PTCDI-C8 OFETs is changed from vacuum to air ambient. Nevertheless, a slight reduction of electron mobility was found when the device was stressed in the air ambient. The change in the device performance has been attributed to the charged ions generation owing to water absorption in gelatin in air ambient.  相似文献   

19.
Dry method for monolayer deposition of n-octylphosphonic acid (C8PA) on the surface of aluminium oxide (AlOx) is presented. Vacuum thermal evaporation is employed to deposit initial thickness corresponding to several C8PA monolayers, followed by a thermal desorption of the physisorbed C8PA molecules. AlOx functionalized with such C8PA monolayer exhibits leakage current density of ~10?7 A/cm2 at 3 V, electric breakdown field of ~6 MV/cm, and a root-mean-square surface roughness of 0.36 nm. The performance of low-voltage pentacene thin-film transistors that implement this dry AlOx/C8PA gate dielectric depends on C8PA desorption time. When the desorption time rises from 25 to 210 min, the field-effect mobility increases from ~0.02 to ~0.04 cm2/V s, threshold voltage rises from ~?1.2 to ~?1.4 V, sub-threshold slope decreases from ~120 to ~80 mV/decade, off-current decreases from ~5 × 10?12 to ~1 × 10?12 A, on/off current ratio rises from ~3.8 × 104 to ~2.5 × 105, and the transistor hysteresis decreases from 61 to 26 mV. These results collectively support a two stage model of the desorption process where the removal of the physisorbed C8PA molecules is followed by the annealing of the defect sites in the remaining C8PA monolayer.  相似文献   

20.
A new donor–acceptor (D?A) copolymer (PIPY–DTBTA) containing 6,12-dihydro-diindeno[1,2-b;1′,2′-e]pyrazine donor and benzotriazole acceptor was synthesized and characterized for multifunctional applications in organic field-effect transistors (OFETs), polymer solar cells (PSCs) and polymer light-emitting diodes (PLEDs). The polymer exhibits high molecular weights, excellent film-forming ability, a deep HOMO energy level, and good solution processability. Solution-processed thin film OFETs based on this polymer revealed good p-type characteristic with a high hole mobility up to 0.0521 cm2 V?1 s?1. Bulk-heterojunction PSCs comprising this polymer and PC61BM gave a power conversion efficiency (PCE) of 0.77%. The single-layer PLEDs based on PIPY–DTBTA emitted a yellow–red light with a maximum brightness of 385 cd m?2 at the turn-on voltage of 6 V.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号