首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The kinetics of the simultaneous internal oxidation of the two most-reactive components B and C in ternary A–B–C alloys, where A is the most-noble and C the most-reactive component, in the presence of an external layer of the A oxide, AO, (high oxidant pressures) are examined assuming the existence of either a single or a double front of internal oxidation. For a single front a unique solution is obtained for the parabolic rate constant of internal oxidation under assigned values of all the parameters involved. When the front is double, a finite range of solutions is allowed with an upper limit equal to the single-front solution and a lower limit equal to the rate constant for the growth of external AO scales. In the case of a single front of internal oxidation, an increase of the rate constant for the growth of the external scales produces an increase of the rate constant for the internal oxidation but a decrease of the degrees of enrichment of the components being oxidized internally within the region of internal oxidation. The behavior in the case of a double front is more complex because it depends also on the actual value of the ratio between the rate constants of internal oxidation for the two fronts.  相似文献   

2.
The conditions for the transition between the coupled internal oxidation of two most-reactive components and the formation of external scales in the scaling of ternary alloys under oxidant pressures below the stability of the oxide of the most-noble component, denoted as a situation of intermediate oxidant pressures, are examined under a number of simplifying conditions which allow to develop an approximate analytical treatment. If the precipitation of the two oxides occurs at the same front of internal oxidation, the kinetics of internal oxidation as well as the critical B and C contents needed for the transition have a single solution under fixed conditions of all the parameters involved. On the contrary, in the presence of two different fronts, when the most-stable oxide forms at the innermost front, a whole range of possible solutions is predicted. In both cases, the critical-C content needed to avoid the simultaneous internal oxidation of B plus C is progressively reduced by the addition of B. This behavior provides the basis for a possible interpretation of the “third-element effect”. However, the existence and the magnitude of this effect are complicated by the occurrence of other modes of oxidation for these systems. Thus, a general treatment of the third-element effect under intermediate oxidant pressures requires an exhaustive analysis of all the oxidation modes permitted for ternary alloys under these conditions.  相似文献   

3.
Niu  Y.  Gesmundo  F. 《Oxidation of Metals》2003,60(5-6):371-391
The kinetics of the coupled internal oxidation of the two most-reactive components in the scaling of ternary alloys under oxidant pressures below the stability of the oxide of the most noble component are examined using a number of simplifying conditions which allow to develop an approximate analytical treatment. The precipitation of the two oxides may occur either at a single front or at two different fronts of internal oxidation. The former case corresponds to a unique solution for all the parameters involved in the process. On the contrary, the existence of two fronts of internal oxidation yields a finite range of possible solutions for the oxidation kinetics as well as for all the other relevant parameters. Even though the present treatment does not allow to predict which solution will be adopted by a real system, it is possible to set limits to the values of the parameters yielding physically-acceptable solutions. After considering a general case, the treatment is applied to a real system already examined experimentally.  相似文献   

4.
Ternary A–B–C alloys, where A is the most-noble and C the most-reactive component, exposed to oxygen pressures above the stability of the least stable oxide AO (high-oxidant pressures) may present two different types of internal oxidation, i.e. either a coupled internal oxidation of both B and C beneath an external AO scale or a single internal oxidation of C beneath an external scale of the oxide of B. This paper examines the conditions required to avoid the coupled internal oxidation of B plus C beneath external AO scales, considering both the case of formation of a single and a double front of internal oxidation. The analysis, based on an extension to ternary alloys of the criterion defined by Wagner for the transition between the internal and external oxidation of the most-reactive component of binary alloys, shows that the addition of B to binary A–C alloys is very effective in reducing the C content needed for this transition in comparison with binary A–C alloys. This results provides a basis for a possible explanation of the third-element effect. However, the actual possibility of its occurrence depends also on the ability to avoid other oxidation modes, not examined here.  相似文献   

5.
The kinetics of internal oxidation of the most-reactive component C of ternary A–B–C alloys in the presence of external scales of the oxide of the component of intermediate reactivity B, BO, are examined using convenient approximations. The precipitation of the most-stable oxide leaves behind a matrix composed of a mixture of the two most-noble components, A and B, whose composition changes with depth due to the consumption of B to form the external scale. For the calculation of the parabolic rate constant use is made of approximate expressions for the concentration of oxygen dissolved in the binary A–B metal matrix within the zone of internal oxidation and for the diffusion coefficient of oxygen as functions of the alloy composition. Numerical calculations of the parabolic rate constant of internal oxidation are carried out for different combinations of values of the various parameters involved. The results obtained for the ternary alloys are compared with the corresponding data calculated for the binary A–C and B–C alloys under the same conditions.  相似文献   

6.
This paper examines the conditions for the transition from internal to external oxidation of the most-reactive component C of ternary A–B–C alloys by a single oxidant under gas-phase oxidant activities below the stability of the oxide of the two most-reactive components using Wagners criterion. For this, approximate relations between the solubility and diffusivity of oxygen and the composition of the binary A–B alloy matrix in the zone of internal oxidation, already developed previously, are used. The critical C content needed for the transition in ternary alloys is calculated as a function of the many parameters involved. At variance with the behavior of binary alloys, for ternary alloys this critical C content depends also on the ratio between the concentrations of A and B in the bulk alloy. The results calculated for ternary alloys are compared with those obtained for binary A–C and B–C alloys under the same values of all the relevant parameters. Finally, complete oxidation maps for ternary alloys under low oxidant pressures,including the condition for the stability of external scales of the C oxide, are also presented.  相似文献   

7.
Gesmundo  F.  Niu  Y. 《Oxidation of Metals》2003,60(5-6):347-370
The internal oxidation of the most-reactive component C of ternary A–B–C alloys by a single oxidant is examined assuming a gas-phase oxidant pressure below the stability of the oxides of the other two components. The precipitation of the most-stable oxide leaves behind a matrix composed of a binary alloy of the two less-reactive components, whose composition affects the solubility and diffusivity of the oxidant within the region of internal oxidation, with an effect on the reaction kinetics. Approximate relations between these properties are proposed and used to predict the kinetics of internal oxidation of C under the assumption of parabolic rate law. The results obtained for the ternary alloys are compared with the behavior of binary A–C and B–C alloys with the same C content. A new important factor in establishing the difference between the internal oxidation in ternary A–B–C alloys and in binary A–C and B–C alloys under a fixed gas-phase oxygen pressure and C content is the ratio between the concentrations of A and B in the bulk ternary alloy.  相似文献   

8.
The internal oxidation of two phase binary A-B alloys by a single oxidant at high temperatures, under partial pressures sufficient to also form external scales of the less-stable oxide, is examined by means of quantitative models and compared with the corresponding behavior of single-phase alloys. It is shown that, depending on various factors, particularly on the solubility and diffusivity of the most-reactive component B in the most-noble component A, this process may or may not involve a diffusion process of the alloy components, leading to different scale morphologies. It is also concluded that even when the solubility and diffusivity of B in A are sufficiently high, so that the internal oxidation of the common type occurs, the restriction to the diffusion of B in the alloy due to its limited solubility affects the kinetics of internal oxidation, producing an increase of the rate of internal oxidation and of the critical concentration of B in the alloy required for the transition to the external oxidation of B with respect to single-phase alloys under the same values of all the relevant parameters. The lower the solubility of B in A, the larger these effects.  相似文献   

9.
This paper presents an analysis of the conditions of stability of the different forms of internal oxidation of ideal ternary A-B-C alloys, where A is the most noble and C the most reactive component, forming insoluble oxide and exposed to high pressures of a single oxidant. The treatment, based on an extension to ternary alloys of Wagner's criterion for the transition from internal to external oxidation in binary alloys, allows to predict the existence of three different forms of internal oxidation. In fact, in addition to the most common kinds of internal attack, involving the coupled internal oxidation of B+C beneath external AO scales and the internal oxidation of C beneath external BO scales, a third mode, involving the internal oxidation of C beneath external scales composed of mixtures of AO+BO, becomes also possible under special conditions. A combination of the boundary conditions for the existence of these different types of internal oxidation allows to predict three different kinds of complete maps for the internal oxidation in these systems, one of which involves only two modes, while the other two involve all the three possible modes of internal oxidation.  相似文献   

10.
The oxidation kinetics and mechanism of oxide-scale failure of pure Ni oxidized under external static compressive and tensile loads were studied. The results showed that both types of mechanical loads accelerated the oxidation rate, but the effect was different for the two types. Compressive loading (CL) affected it by improving the plasticity of oxide scales, and tensile loading (TL) affected it by amplifying the compaction of the oxide–metal interface. As for the oxide-scale failure, CL can delayed cracking, TL accelerated brittle failure. The study analyzed the effect of external load on the oxidation kinetics and the failure mechanism of oxide scales.  相似文献   

11.
The aim of this paper was to investigate the effect of external mechanical loads on the kinetics and process of high temperature oxidation of metals or alloys through a modeling approach. In this model, the complicated interplay among the external stress, growth strain and creep strain, the oxide stress and thickness was identified. The stress accumulation in the oxide and the variation of scale thickness along with time and the effect of oxidation behavior on the creep properties of underlying metal during oxidation process can be expected. Generally, the external tensile stress would promote the growth rate of oxidation layer. Introducing a small external stress may lead to obvious changes of magnitude and state of stress in oxidation layer. At a given external stress, the creep strain rate was not kept constant due to the oxidation layer growth and stress transfer between oxidation layer and underlying metal.  相似文献   

12.
Oxidation of five Cu–Zn alloys at 1,073 K in 0.1 MPa O2 showed the existence of three possible oxidation modes, including the internal oxidation of zinc beneath external CuO x scales, the growth of mixtures of the two oxides and the exclusive growth of external ZnO scales. The critical Zn contents required for the transitions between these oxidation modes have been calculated and compared with the experimental results.  相似文献   

13.
Water vapor present in an environment is known to limit long-term usage of thin metallic components due to accelerated oxidation attack. This paper is focused on the comparative long-term cyclic oxidation resistance of several high-temperature foil alloys in air plus 10 vol.% water vapor exposed for 360 days at 760 and 871 °C. Alloy performance was ranked by assessing weight-change behavior, metal recession measurements, and a special oxidation attack parameter designed to take into account original foil thickness. It was found that the oxidation attack parameter was quite useful in discerning the alloy performances. The types of internal and external oxide scales evolved during oxidation reaction were studied using SEM equipped with EDS and an attempt was made to correlate the alloy performance with type of scale(s) formed during oxidation exposure.  相似文献   

14.
研究了含Nb15和30wt%的Co-Nb二元合金在latin纯氧中600~800℃的氧化特性。它们的氧化动力学近似地遵循抛物线规律,而其瞬时氧化速率常数随时间而减低、且以600℃氧化者尤甚。两合金的氧化速率均高于纯Co,但其速率增量颇低。在所有的实验条件下,两合金都发生了外氧化与内氧化,外氧化膜的外侧为连续的纯氧化钴带,其下为两个二元Co-Nb氧化物(CONb2O6和CO4Nb2O9)与基金属氧化物的混合。内氧化带为氧化钴、氧化铌(Nb2O5或/和NbO2)的混合,而在该带的最外侧还有源于富Nb合金相的二元氧化物。在合金-氧化膜界面处都没有观察到贫铌带。从合金的和所生成氧化膜的显微组织特征,尤其是从铌在钴中溶解度低的角度,对合金的氧化行为进行了讨论。  相似文献   

15.
Gesmundo  F.  Niu  Y.  Wang  W. 《Oxidation of Metals》2001,56(5-6):537-549
The construction and the properties of three-dimensional diagrams showing the regions of stability of the various compounds, which can form as a result of the oxidation of ideal ternary A–B–C alloys by a single oxidant at a constant temperature (kinetics diagrams) are examined for oxidant pressures insufficient to oxidize all possible alloys within the system (low oxidant pressures). For the calculation it is assumed that the various oxides do not dissolve into each other and do not form double oxides and that the alloy has an ideal behavior, while internal oxidation of the most-reactive components is disregarded. The range of meaningful oxidant pressures is divided into six intervals, which correspond to the formation of different types of scales. The simplified two-dimensional (2D) kinetics diagrams presented are obtained by projecting the appropriate three-dimensional (3D) lines of equilibrium between the alloy and the various oxides on the base triangle, which gives the composition of the system in terms of the three metal components only. The kinetics diagrams are correlated with the corresponding equilibrium phase diagrams for the same quaternary A–B–C–O systems.  相似文献   

16.
Classic kinetics equations of internal oxidation of binary alloys associated with the formation of an external oxide scale of the base metal have been simplified by applying mathematical asymptotical analysis. An analysis for the case of ternary alloys is also presented. The analysis involves simultaneous internal oxidation of the two solutes in the ternary alloys below the external oxide scale of the base metal. The kinetics equations derived are applied to calculate depths of internal oxidation zones of Ni-4 at.% Al-1 at.% Si alloys oxidized in 760 torr of oxygen at 800°C.  相似文献   

17.
铁在双相Fe—Cu合金中的内—外氧化   总被引:1,自引:0,他引:1  
三处Fe-Cu合金在氧分压低于氧化铜平衡分解压条件下的高温氧化结果表明,合金中同时发生了活泼组元铁的内氧化和外氧化,外氧化膜为单一铁的氧化物,内氧化区中氧化铁和金属铜继承了原始合金中两相的分布。内氧化区前沿的合金中未发现铁的贫化。这种氧化膜结构的单相合金中罕见而在双相合金中较为普遍,被认为是双相合金中两组元间有限地互溶度使得氧在合金中的过饱和程度比在固溶体合金中更强烈的结果。  相似文献   

18.
The internal oxidation of Ni in dilute Cu?CNi alloys exposed to 1 atm. O2 at 900 °C, and thus in the presence of external CuOx scales, is absent for Ni levels below a critical value, extremely close to that required for the simultaneous equilibrium between the alloy and the oxides of the two components. For Ni contents not largely exceeding this limit the internal oxidation of Ni deviates from the classical behavior described by Wagner, approaching that predicted by Morral et al. for the precipitation of compounds with limited thermodynamic stability.  相似文献   

19.
Gesmundo  F.  Castello  P.  Viani  F.  Roos  C. 《Oxidation of Metals》1998,49(3-4):237-260
According to the theory of Bohm and Kahlweit ofthe internal oxidation of binary A-B alloys, theparabolic rate constant for the formation of reasonablystable internal BO oxides as well as theconcentrations of O and B at the oxidation front arecontrolled only by the degree of supersaturationnecessary for the nucleation of new oxide particles. Theeffects of this factor on the previous parameters arecalculated for various values of the solubility product ofthe oxide and of the diffusion coefficients of O and B.Moreover, an alternative procedure for the calculationof the critical degree of supersaturation behind the precipitation front required for oxideprecipitation, which is a function of the concentrationof the reactants at the internal oxidation front, isproposed. A simple modification of Wagner's theory of internal oxidation is also presented, andits results are compared with those of the treatment byBohm and Kahlweit. Finally, the limitations of the twomethods are examined.  相似文献   

20.
研究了经自发分解产生的Cu 30Ni 2 5Fe(摩尔分数 ,% )双相合金在 80 0~ 90 0℃于低氧分压 (只有Fe可被氧化 )条件下的氧化行为。该合金的氧化动力学遵循抛物线规律 ,相同氧化条件下 ,其氧化速率低于纯Fe和二元Cu 2 5Fe合金。氧化膜包括Fe3O4外层和FeO的内氧化物颗粒 ,并且FeO均匀分布在Cu Ni固溶体上 ,与合金两相的初始分布没有联系 ,而内氧化带前沿合金中出现贫Fe的Cu Ni固溶体单相层。讨论了二元 /三元双相合金与单相合金由互固溶度引起的氧化行为差异 ,认为双相合金中难以发生最活泼组元的单一外氧化是由于组元在基体中的扩散受到双相强烈限制的结果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号