首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《稀土》2016,(5)
首先采用二步熔炼法制备了铸态Mm(NiCoMnAl)_5-Mg_2Ni复合储氢合金,然后在不同快淬速度下对铸态Mm(NiCoMnAl)_5-Mg_2Ni复合合金进行快淬处理,获得一系列不同快淬速度的快淬态Mm(NiCoMnAl)_5-Mg_2Ni复合储氢合金。利用X射线衍射(XRD)、扫描电镜及能谱分析(SEM/EDS)和电化学测试方法研究了所有合金的微结构和电化学性能。微结构分析表明,铸态Mm(NiCoMnAl)_5-Mg_2Ni复合合金由LaNi_5和少量的Mg_2Ni相组成。而铸态复合合金经快淬处理后,合金中少量的Mg_2Ni相消失,同时有LaNi_3和极少量的La2Ni3新相形成。快淬态合金中的Mg元素主要以固溶形式优先存在于富稀土LaNi_3相中,形成(La,Mg)Ni_3相。电化学分析表明,恰当的快淬处理能使Mm(NiCoMnAl)_5-Mg_2Ni复合合金的活化性能、最大放电容量、放电特性和循环稳定性得到改善。但快淬速度太大,上述性能均有变坏趋势。当快淬速度为15 m·s-1时,Mm(NiCoMnAl)_5-Mg_2Ni复合合金具有最大的放电容量,此时合金的最大放电容量为303.5 m Ah·g~(-1),比铸态合金的最大放电容量增大了3.3%;快淬速度为20 m·s~(-1)时,复合合金的循环稳定性最佳,80次循环后的容量保持率为98.3%,比铸态合金的容量保持率增大了11.9%。  相似文献   

2.
《稀土》2015,(4)
采用中频感应熔炼-快淬方法制备La15-xSmxFe2Ni76Mn5B2(x=0,2,4,6)型储氢合金。结构分析表明:快淬态La15-xSmxFe2Ni76Mn5B2(x=0,2,4,6)合金为多相结构,主相为La Ni5相,另外还有La3Ni13B2相和(Fe,Ni)相。快淬合金经1173 K保温3小时,而后随炉冷却到室温,随着Sm替代La的量不同,合金的组成相有着不同的变化。电化学测试表明,退火热处理明显提高了合金电极的最大放电容量,改善了合金电极的自放电性能。退火合金电极的高倍率放电能力均低于快淬合金,表明储氢合金电极的电化学动力学性能有所下降。  相似文献   

3.
测试了AB3型贮氢合金La0.67Mg0.33(NiCo)3铸态与快淬态的电化学性能,用XRD和SEM测试了合金的微观结构,研究了快淬对AB3型贮氢合金电化学性能的影响.结果表明,快淬使合金的放电容量降低,对合金的活化性能没有明显影响;快淬降低了合金的容量衰减率,提高了合金的循环寿命,其主要原因是快淬使合金的晶粒显著细化.铸态和快淬态合金均具有多相结构,包括斜六面体的(La,Mg)Ni3相,六方的LaNi5相及少量的LaNi2相.快淬使合金中的LaNi2相含量增加,这是快淬使合金放电容量下降的一个主要原因.  相似文献   

4.
利用快淬法制备了La_4MgNi_(19)储氢合金,并对快淬合金进行了退火处理,对比研究了快淬及其退火合金组织结构、储氢性能的差异,并对其失效行为进行了分析。结果表明,快淬La_4MgNi_(19)合金由(La,Mg)_2Ni_7,(La,Mg)_5Ni_(19)和LaNi_5多相组成,退火使晶粒尺寸变大并促进了(La,Mg)_5Ni_(19)相含量的增加。退火处理提高了快淬合金的最大放电容量和高倍率放电性能,但降低了合金的电化学循环稳定性。浸泡试验表明退火能够提高合金的本征耐腐蚀性。然而气态吸放氢循环实验后的粒度分析发现退火加剧了合金的粉化。快淬合金具有优异的抗粉化能力,在30次气态循环实验中合金粒度几乎不变,这是快淬合金电化学循环稳定性更好的主要原因。透射电镜(TEM)分析表明退火合金粉化加剧的原因在于退火过程中形成了大量的显微台阶,显微台阶之间的结合较弱,容易开裂;此外,退火过程中合金发生了部分氧化,在晶界处引入了氧化物质点,弱化了晶界的结合力。  相似文献   

5.
快淬对合金Mm(NiCoMnAl)5.1B0.1组织及电化学性能的影响   总被引:3,自引:1,他引:2  
对铸态和快淬态贮氢合金Mm(NiCoMnAl)5.1B0.1的微观组织和电化学性能进行了研究。发现快淬态合金基本上消除了第二相,快淬合金组织中存在一定比例的非晶相,并且随着淬速增加非晶相的量增多;与铸态合金相比,快淬态合金的放电容量有所降低,但循环寿命显著提高,这主要是由于快淬导致晶粒细化和形成一定数量的非晶态组织。  相似文献   

6.
为了研究退火时间对LaMgNi_(3.9)Mn_(0.2)合金的结构和气态吸放氢性能的影响,采用XRD和SEM手段测试了合金的物相和微观结构,半自动Siever′s法测试了合金的吸放氢动力学曲线。实验结果表明,随着退火时间增加,合金中LaMg(NiMn)_4主相含量降低,(La,Mg)(NiMn)_5相含量增加。铸态及退火合金表面均由不同尺寸的柱状晶组成,具有明显的组织遗传效应;随着退火时间增加,合金柱状晶区域中La、Mg、Ni的含量差值都降低,元素分布更均匀,15 h与20 h退火合金的柱状晶晶间区域中Mn元素消失。铸态和退火合金第一次吸氢后达到相应的最大吸氢量,故退火时间对合金的活化性能无影响,但对合金的最大吸氢量、饱和吸放氢量具有明显影响。随着退火时间增加,合金的最大吸氢量、饱和吸放氢量降低,但合金的吸放氢饱和率先增加后降低,15 h退火合金的吸放氢饱和率相对较高。  相似文献   

7.
为了改善Mg2Ni型合金气态及电化学贮氢动力学性能,用La部分替代合金中的Mg,用快淬技术制备了Mg2-xLaxNi(x=0,0.2,0.4,0.6)合金,用XRD,SEM,HRTEM分析了铸态及快淬态合金的微观结构;用自动控制的Sieverts设备测试了合金的气态贮氢动力学性能,用程控电池测试仪测试了合金的电化学贮氢动力学.结果发现,快淬无La合金具有典型的纳米晶结构,而快淬含La合金显示了以非晶相为主的结构,表明La替代Mg提高Mg2Ni型合金的非晶形成能力.La替代Mg明显地改变Mg2Ni型合金的相组成.当La替代量x=0.4时,合金的主相改变为(La,Mg) Ni3+ LaMg3.合金的气态及电化学吸放氢动力学对La含量及快淬工艺敏感,La替代使合金的吸氢动力学降低,但适量的La替代可以明显改善合金的放氢动力学及高倍率放电能力.适当的快淬处理可以提高合金的气态及电化学贮氢动力学,但获得最佳贮氢动力学的快淬工艺与合金的成分密切相关.  相似文献   

8.
La-Mg-Ni系A2B7型合金由于其高的放电容量被认为是最具希望的Ni-MH电池负极材料,然而,低的电化学循环稳定性制约着合金的实际应用。为了改善La-Mg-Ni系A2B7型合金的电化学贮氢性能,用RE(RE=Nd,Sm,Pr)部分替代合金中的La,用感应熔炼及退火工艺制备了La0.8-xRExMg0.2Ni3.35Al0.1Si0.05(RE=Nd,Sm,Pr;x=0,0.2)电极合金。为了抑制Mg在熔炼过程中的挥发,熔炼过程中采用氦气作为保护气氛。用X射线衍射(XRD)和扫描电镜(SEM)分析了铸态及退火态合金的微观结构,并测试了铸态及退火态合金的电化学贮氢性能,比较了不同稀土元素替代La对合金电化学性能的影响。结果表明,铸态及退火态合金包含两个主相,具有Ce2Ni7型结构的(La,Mg)2Ni7相以及Ca Cu5型结构的La Ni5相。RE(RE=Nd,Sm,Pr)部分替代La未影响合金的相组成,但使合金的相含量发生明显改变。此外,元素替代使铸态及退火态合金的组织明显细化。RE(RE=Nd,Sm,Pr)部分替代La显著改善了合金的电化学贮氢性能,包括电化学循环稳定性、放电容量及电化学动力学性能。  相似文献   

9.
采用真空电弧熔炼法熔炼出Al CoCrFeNi高熵合金,并在600,800,1000℃下进行了真空退火处理。利用X射线衍射仪(XRD),扫描电镜(SEM),能谱仪(EDS)及维氏硬度实验和压缩实验对合金退火前后的组织结构和性能进行了研究。XRD测试结果表明合金在铸态和3种温度的退火态下均没有复杂结构的脆性金属间化合物生成,在铸态和600,800℃退火处理后合金均由简单的BCC结构构成,在1000℃退火处理后,合金由BCC+FCC双相结构组成。SEM发现在铸态和600,800℃退火处理后,合金等轴晶晶界明显,在等轴晶晶内又分布着花瓣状树枝晶,1000℃退火处理后树枝晶消失,在原来基础上析出了大量的FCC结构的短棒状物质,形成了(BCC+FCC)的复相组织。硬度试验和压缩试验表明合金在铸态和3种温度的退火态下都表现出了良好的综合机械性能,有很好的抗回火软化能力。在4种状态中,600℃退火态的硬度和屈服强度最大,分别为HV 684和1630 MPa; 1000℃退火态由于大量的FCC相的析出,导致其硬度和强度最低; 800℃退火态有最好的综合机械性能。  相似文献   

10.
采用感应熔炼法制备La_(0.53)Ce_(0.47)Ni_(3.4)Co_(0.6)Mn_(0.3)Cu_(0.1)储氢合金,并在不同温度下进行热处理,通过XRD对其相组成及结构进行表征,并采用双电极模拟电池测试系统对其储氢性能进行测试与分析。结果表明,随着退火温度的升高,合金的相组成未发生变化,但其晶化程度逐渐增高,晶体缺陷和晶格应力逐渐减少。热处理改善了合金的循环稳定性,提高了合金的电化学容量,但恶化了高倍率放电能力。  相似文献   

11.
为了研究急冷对储氢合金残余氢量的影响,利用真空电弧熔炼炉和铜模喷铸制备了Ti_(0.32)Cr_(0.345)V_(0.25)Fe_(0.03)Mn_(0.055)合金,采用XRD、PCT(压力-容量-温度)、TG/DTA等手段分析了急冷对储氢合金吸放氢性能的影响。结果表明,铸态合金和急冷合金均由BCC固溶体主相和Laves第二相组成;急冷对首次吸氢动力学行为影响较大,由铸态时的化学反应控制变为急冷时的新相晶核形成长大控制;急冷后,合金吸放氢平台压得到提高,且吸氢起始点左移,但吸放氢滞后性增大。TG/DTA曲线表明,急冷并没有改变合金的残余氢量,但氢化物放氢温度升高。  相似文献   

12.
梁丽萍  张路  曾志伟 《稀土》2021,(1):52-60
采用真空感应熔炼的方法制备了La0.65Er0.15Mg0.20Ni3.3储氢合金,研究了铸态和退火态(950℃×6 h~24 h)La0.65Er0.15Mg0.20Ni3.3储氢合金组织结构和电化学性能.结果 表明,相较于铸态La0.65Er0.15Mg0.20Ni3.3储氢合金,热处理后La0.65Er0.15M...  相似文献   

13.
为了探究La0.62Y0.2Mg0.18Ni3.30Al0.20合金具有良好气态吸放氢性能的适宜退火温度,采用XRD、OM分析了铸态及退火合金的相结构及金相组织,用SEM观察了吸放氢前后合金颗粒的表面形貌,用压力-组成-温度(PCT)仪测试了合金的PCT特性以及吸放氢动力学性能。结果表明,900℃退火合金含有LaNi5和(La,Y,Mg)2(Ni,Al)7主相以及Ni3Y残余相。随着退火温度升高,主相不变,但Ni3Y转变成Y2Ni7相;主相晶胞体积先增大后减小,在41~43°衍射角度内,半高宽先减小后增大。与铸态及其他温度退火合金相比,950℃退火合金的组织均匀性较好,吸放氢量、平均吸放氢速率较高,吸放氢的氢压和滞后系数较小。综合比较,实验范围内,合金的适宜退火温度为950℃。  相似文献   

14.
为研究退火处理对Al_(1.5)CrCuFeMnTi高熵合金组织和硬度的影响,采用真空电弧熔炼方法制备了铸态合金,通过X射线衍射仪、扫描电子显微镜和维氏硬度计等手段对不同温度等温退火处理制得合金的组织形貌、晶体结构、成分分布和硬度进行表征。结果表明,铸态Al_(1.5)CrCuFeMnTi高熵合金由一个有序和一个无序的体心立方结构固溶体构成,形成了典型的枝晶组织,并在合金中观察到调幅结构特征。经过945℃退火处理后,合金中形成一个富含Al、Cr和Mn元素复杂结构的Laves相,合金经980℃退火后,该Laves相转变为以Cr为基体的FCC固溶体。退火处理利于铸态合金中残余内应力释放,致使合金硬度减小至HV450左右。  相似文献   

15.
用真空电弧熔炼制备AB2型Sc0.8Zr0.1Y0.1Mn2-xNix(x=0~2.0)储氢合金,利用X射线衍射(XRD)和扫描电镜/能谱分析(SEM/EDS)研究了吸氢前后Ni元素替代Mn对Sc Mn2基合金微观结构的影响,用Sievert装置和热重-差热分析仪(TG/DSC)测试了合金的压力-组成-温度(P-C-T)曲线和吸放氢动力学。研究结果表明,合金铸态组织主要由Laves主相和少量Sc Ni及富Y的第二相组成,其中稀土Sc和Y元素易与Ni形成相应的金属间化合物相。随Ni含量x的增加,合金基体的Laves相组织结构由C14型向C15型转变,x=0时,合金组织基本为C14型Laves相单相组织,x=2.0时,合金组织则完全转变为C15型Laves相单相组织。Ni元素替代Mn对合金的气态吸放氢动力学行为和吸氢P-CT曲线影响较大。随Ni含量的增加,合金吸氢动力学与活化性能逐渐变慢,但其放氢温度明显降低,氢化物生成焓减小(-35.05~-18.72k J·mol-1),储氢平台压升高,储氢容量降低;室温时合金最大储氢量达2.18%(质量分数),储氢后其晶格膨胀率ΔV/V为10.63%~27.32%,吸氢前后合金主相仍保持C14型或C15型相结构,并未发生新的氢致相变,亦无氢致非晶化现象。  相似文献   

16.
特种工艺方法制备储氢合金评述   总被引:6,自引:0,他引:6  
首先分别简述了气体雾化法、熔体快淬法和铸带法制备储氢合金的微观组织结构特征和电化学性能。其次从合金电极充—放电机理出发分析了具有易活化、高容量、长寿命及高倍率性能等优异电化学性能的储氢合金应该具有的理想微观组织特征。说明了气体雾化法和快淬法在储氧合金制备中固有的弊端,指出铸带法是3种特种工艺方法中制备高性能AB5型储氢合金的最佳选择。  相似文献   

17.
快淬 TiZrVMnNi 贮氢合金的电化学性能研究   总被引:2,自引:0,他引:2  
对比研究了熔体旋转和常规铸态Ti0 .8Zr0 .2 Mn0 .5V0 .5Ni1.0 贮氢合金的电化学特性。发现快淬态与铸态合金的活化性能都很好 ,经过 1~ 3次充放电循环 ,就可达到最大放电容量。快淬工艺明显提高了合金的放电容量 ,并且淬速与放电容量之间在一定情况下出现峰值。快淬工艺同时改善合金的放电电压特性 ,使合金的放电平台更平 ,平台电压更高。但是快淬钛基贮氢合金的循环稳定性能和铸态合金一样差 ,放电容量在 10次内急剧衰减。  相似文献   

18.
采用中频感应熔炼-快淬炉制备了La15-xNdxFe14Ni64Mn5B2(x=0、2、4、6)储氢合金。扫描电镜(SEM)及能谱(EDS)分析表明,这些合金由(La,Nd)Ni5相、(Fe,Ni)相和(La,Nd)3Ni13B2相组成。X射线衍射(XRD)分析表明,Nd含量对合金的相组成没有影响,但随Nd含量的增加,衍射峰向高角度方向轻微位移。电化学测试表明,随x值的增大,合金电极的放电容量及高倍率放电能力(HRD)先增加后减小,x=2时的放电容量(302mAh.g-1)最高,HRD值(1050 mA.g-1放电时为65.6%)最大。充放电循环稳定性随x值的增大而增加。适量的Nd替代La有利于改善LaFeNiMnB储氢合金的综合电化学性能。  相似文献   

19.
用熔炼-快淬工艺制备La15Fe77-xNixMn5B3(x=55,60,65,70,75)储氢电极合金。采用XRD、SEM、EDS及电化学方法研究合金的组织结构、放氢平台特性和电化学性能。研究结果表明,La15Fe77-xNixMn5B3(x=55,60,65,70,75)合金均为多相结构,主相是LaNi5相,另外还有(Fe,Ni)相和La3Ni13B2相。随Ni含量增加,合金电极的最大放电容量逐渐增加,活化次数明显减少,放氢平台特性变好,高倍率放电性能明显改善。  相似文献   

20.
热处理对La0.65Mg0.35Ni3.0储氢合金电极自放电性能的影响   总被引:1,自引:1,他引:0  
铸态La0.65Mg0.35Ni3.0储氢合金在1173K热处理后,电极的放电容量、循环稳定性、自放电性能都有明显改善.合金电极的最大放电容量由铸态的350.6mAh·g-1提高到360.7mAh·g-1,室温静置72h后的荷电保持率由铸态的77.7%增加到83.4%.电化学压力-组成-温度(P-C-T)曲线与阳极极化曲线的测试证实了合金电极电化学性能的变化规律.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号