首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
湖北低品位钨钛多金属矿综合回收试验研究   总被引:1,自引:0,他引:1  
湖北十堰低品位钨钛多金属矿原矿含Fe为25.64%,TiO2为6.22%,WO3为0.26%,铁以磁铁矿为主、钛以钛铁矿为主、钨以黑钨矿为主。采用弱磁选回收铁得铁精矿、强磁选得钛钨混合精矿、复合摇床重选分离钨钛得钛精矿和钨精矿。铁、钛、钨分选试验得出,在一段磨矿细度为-0.045 mm占95%、弱磁选磁场强度H=0.10 T、二段磨矿细度为-0.038 mm占95%、强磁选磁场强度H=1.0 T的弱磁选—强磁选—重选工艺综合条件下,得到了Fe品位为62.76%,含TiO2为0.79%,WO3为0.09%,铁回收率为56.20%的铁精矿;WO3品位为65.01%,含Fe为10.18%,TiO2为2.01%,钨回收率为49.67%的钨精矿;TiO2品位为48.10%,含Fe为21.06%,WO3为0.98%,钛回收率为71.01%的钛精矿,实现了有价金属铁、钛、钨的综合回收。  相似文献   

2.
含钪钛矿石氯化焙烧—浸出分离钪研究   总被引:1,自引:0,他引:1  
肖军辉  施哲  陈金花 《稀土》2015,(2):21-28
云南含钪钛矿石原矿含TiO212.68%、Fe 31.65%、Sc2O392 g·t-1,钪主要分布于钛辉石、钛磁铁矿和磁铁辉石中。采用螺旋溜槽重选—弱磁选—摇床重选工艺处理该矿石得到了Sc2O3含量为266 g·t-1,钪回收率为90.34%的钪精矿及TiO2为48.62%,钛回收率为55.95%的钛精矿。采用氯化焙烧和湿法浸出相结合的工艺进一步分离钪精矿中的钪,工艺条件试验结果表明,在氯化钠用量为4%、焙烧温度为900℃、焙烧时间为90 min、浸出液固比R=1.5∶1、盐酸用量为3%、浸出时间为75 min的综合条件下,钪的浸出率为83.39%~83.47%,浸出渣中钪含量为40.08 g·t-1~40.37 g·t-1。浸出渣的扫描电镜图谱分析显示,浸出渣中没有出现钪的谱线峰值,表明钪的溶解较彻底。  相似文献   

3.
《钢铁钒钛》2021,42(4):33-38
以云南某低品位钛铁矿为研究对象,原矿含钛(TiO_2)仅为5.67%,大部分单独存在于钛铁矿中,占矿石中TiO_2总量的83.56%,其余部分以类质同象的形式存在于磁铁矿和辉石中,占16.44%,脉石矿物主要包括石英、绿泥石等。针对该钛铁矿开展选矿试验,目的是通过选矿试验研究,寻求合理的工艺流程,对该资源的开发提供理论依据,可以使钛矿资源得到充分利用。首先查明了该矿石的化学组分、矿物组成,其次进行了磨矿细度、弱磁磁场强度、强磁磁场强度等工艺参数条件研究。在此基础上通过"磨矿-弱磁-强磁-强磁-分级摇床重选-中矿再磨再选"联合工艺流程,最终可获得TiO_2品位为45.06%的钛精矿,回收率(对原矿)为53.73%;指标较好,实现了对目的矿物的有效回收。  相似文献   

4.
对某选铁尾矿中的白钨进行了综合回收试验研究。根据试料性质,采用了弱磁选-重选-强磁选、弱磁选-重选、弱磁选-重选-浮选等3种方案进行白钨选矿试验,最终确定弱磁选-重选-浮选工艺。试验结果为铁精矿品位Fe65.89%,回收率22.07%,钨精矿品位WO351.64%,回收率为10.94%的分选指标。  相似文献   

5.
甘肃低品位钛铁矿选矿工艺研究   总被引:2,自引:0,他引:2  
甘肃某低品位原生钛铁矿TFe和TiO2的含量分别仅为12.23%和3.80%,针对铁和钛的赋存状态和嵌布粒度特点以及矿区严重缺水的现状,制定了干式中强磁磁选预抛尾、细磨弱磁选选铁、强磁选与浮选联合选钛组合技术方案,研究了磨矿细度、磁感应强度等的影响,在获得最优工艺条件的基础上,进行了全流程闭路试验。试验获得了含Fe 60.57%的铁精矿、含TiO246.15%的钛精矿,铁的回收率为35.41%,钛回收率达66.19%,实现了矿石中铁和钛资源的综合回收。  相似文献   

6.
某钛铁矿矿石包括钛铁矿、石英、锐钛矿、赤铁矿、白云母及绿泥石等矿物,主要为赤铁矿,其次为硅酸铁,磁铁矿物较少,钛主要以钛铁矿和锐钛矿形式存在。根据探索试验,制定了"弱磁选-强磁选抛尾-摇床精选"的工艺流程,并在此基础上进行了条件试验,确定了最佳磨矿细度为-200目含量占83.5%,弱磁场强度为1200Oe,强磁选强度为1T。得到最终试验结果为:铁精矿铁品位为60.8%,回收率为5.4%;钛精矿钛的品位为46.86%,回收率为77.02%。  相似文献   

7.
承德某铁尾矿中含有磷和钛两种可回收元素,其中磷以磷灰石的形式存在,钛主要为钛铁矿。经"磨矿-浮选-强磁-重选-再磨-强磁"的工艺流程,可获得当磨矿细度为-0.074mm52.14%时,以AW-01为捕收剂,采用一粗三精浮选工艺流程,可获得品位为31.36%,回收率为82.49%的磷精矿,品位为23.00%,回收率为91.24%的钛精矿,同时尾矿中磷品位降至0.31%,钛品位降至0.89%,满足国家排放标准。  相似文献   

8.
海南钨钼多金属矿选矿试验研究   总被引:1,自引:0,他引:1  
海南某地钨钼矿原矿含Mo 0.56%,WO3 0.28%,Fe 2.44%,钼主要以辉钼矿形式赋存于矿石中,钨主要以白钨矿和黑钨矿形式赋存于矿石中,铁主要以磁铁矿形式赋存于矿石中,属于低品位钨钼铁多金属矿。采用一次粗选一次扫选四次精选的浮选工艺回收钼,浮选尾矿采用弱磁选回收磁铁矿,一次粗选两次精选的重选工艺回收钨。通过试验得到了适合该钨钼多金属矿选矿的浮选-弱磁选-重选工艺流程,该工艺可以得到Mo品位为45.86%,含WO3 0.07%,含Fe为1.12%,回收率为88.19%的钼精矿;WO3品位72.80%,含Fe 0.07%,含Mo0.02%,回收率为82.88%的钨精矿;Fe品位为56.88%,含WO3 0.06%,含Mo 0.03%,回收率为50.15%的铁精矿,实现了对低品位钼钨铁多金属矿的综合回收利用。  相似文献   

9.
丘盛华  聂光华  涂威 《云南冶金》2011,40(1):31-34,39
主要对广西某褐铁矿进行选矿试验研究,针对该矿石铁品位相对较高,含S、P成分少的性质,采用了单一重选、磁选及氧化焙烧-强磁选和还原焙烧-弱磁选工艺进行了试验研究。结果表明,采用单一摇床重选或强磁选,精矿铁品位和回收率都低,选别效果较差;采用氧化焙烧-强磁选工艺,氧化焙烧可以把原矿品位提高到57%,强磁选对提高矿石品位效果较差;采用还原焙烧-弱磁选工艺效果较好,可获得品位为59.77%、回收率为77.24%铁精矿。  相似文献   

10.
云南某菱铁矿焙烧产品选矿工艺研究   总被引:1,自引:1,他引:0  
通过对云南某菱铁矿石焙烧产品的性质及其相关研究认为,细磨-弱磁选是有效处理该焙烧产品的工艺.试验表明:①该菱铁矿焙烧效果较好;②磨矿是影响选矿指标的重要因素;③弱磁选和重选都能有效地回收磨细焙烧产品中的铁矿物;④在相同磨矿条件下,弱磁选比重选回收率高,而富集比相对较低;⑤采用磨矿(磨矿细度为72.51%-0.074mm)-弱磁选(磁场强度为232kA/m),一次粗选,一次精选工艺选别该焙烧产品,可以得到铁品位为74.10%,回收率为93.06%的铁精矿.  相似文献   

11.
杨道广 《钢铁钒钛》2022,(3):111-117
某低品位钒钛磁铁矿,TiO2品位为6.15%,矿物组成复杂,为充分回收其中的钛铁矿,针对钛的赋存状态及粒级分布特点,制定了强磁磁选预抛尾、重选提质、细磨弱磁选除铁、反浮选脱硫与一粗一扫两精浮钛组合工艺流程,研究了磁感应强度、磁介质大小、脉动冲程、磨矿浓度、磨矿时间、浮选调整剂及捕收剂用量等的影响,在获得最优工艺条件的基础上,按“一段强磁抛尾—两段重选抛尾—磨矿—除铁—浮选”的工艺流程进行了闭路试验。试验获得了TiO2品位48.22%,回收率为35.19%的钛精矿。矿石中主要有用的矿物钛铁矿得到了有效的回收。  相似文献   

12.
采用矿物自动分析仪(MLA)查明了四川牦牛坪稀土矿的矿物组成、嵌布粒度特征,对比分析了主要矿物的密度、莫氏硬度、比磁化系数和磁性的工艺特性差异,利用湿式高梯度强磁选-重选-浮选的组合工艺进行了选矿试验研究。结果表明:主要稀土矿物氟碳铈矿粒度多在1.28~0.04 mm范围内,具有顺磁性,而重晶石、萤石、正长石和石英呈现非磁性,此磁性差异是强磁选能预先富集的关键矿物学因素。通过实验确定最佳工艺条件和结果为:在-1.0 mm粒径,1.0 T背景场强下湿式强磁选粗选,强磁选精矿分级成3个粒级物料,-1.0~+0.4 mm物料进行粗砂摇床重选,-0.4+0.074和-0.074 mm物料分别进行细砂摇床重选,各重选中矿合并,在0.6 T背景场强下湿式强磁选精选,磁选精矿与重选精矿合并,获得REO品位65.49%,回收率67.80%的磁重稀土精矿;磁选精选中矿与摇床尾矿合并成REO 2.10%的稀土中矿,在磨矿细度-0.043 mm占70%,pH 8~9,水玻璃用量714 g·t~(-1)原矿,捕收剂GSY 1033 g·t~(-1)原矿下进行常温浮选,获得REO品位67.84%,回收率15.46%的浮选稀土精矿;两种稀土精矿REO平均品位65.93%,总回收率83.26%。  相似文献   

13.
辽宁省本溪市某铁矿在生产过程中发现含有金,原矿含金品位为1.47g/t,含铁品位为18.82%。通过浮选回收金+磁选回收铁的联合工艺流程,获得了比较理想的选矿工艺指标。试验矿石在磨矿细度为-0.075mm占65%的条件下,采用硫酸铜作为金载体矿物的活化剂,丁基黄药和丁铵黑药作为捕收剂,采用一次粗选三次精选二次扫选的浮选工艺流程,试验取得的工艺指标为,金精矿含金品位为50.85g/t,金回收率为75.49%。浮选尾矿进行湿式弱磁场回收磁铁矿,粗精矿再磨至细度为-0.075mm 97%再选得铁精矿,试验取得的工艺指标为,铁精矿含铁品位为65.52%,铁回收率为29.42%。  相似文献   

14.
应用化学分析、扫描电镜观察和X射线衍射分析方法研究海砂矿的基础物性.采用煤基深度还原-磁选工艺,系统考察矿粉中Fe和Ti的还原分离行为,并明确还原温度、还原时间、碳氧比、磁感应强度和磨矿粒度对还原磁选效果的影响规律.结果表明:海砂矿主要由钛磁铁矿和钛赤铁矿组成;较优的还原分离工艺参数为还原温度1300℃、还原时间30 min、碳氧摩尔比1.1、磁感应强度50 mT和磨矿细度-0.074 mm质量分数86.34%.在此工艺条件下,可以获得金属化率94.23%的还原产物,磁选指标分别达到精矿铁品位97.19%和尾矿钛品位57.94%,对应的铁、钛回收率为90.28%和87.22%,有效地实现海砂矿中铁钛元素的分离富集.   相似文献   

15.
为更高效地开发利用印尼钛铁砂,利用X射线衍射(XRD)、激光粒度分析以及扫描电镜-能谱(SEMEDS)等研究方法,对钛铁砂的矿石性质及其细磨磁选过程进行研究。结果表明:在该钛铁砂中,铁和钛均主要以钛磁铁矿、钛铁矿、钛赤铁矿的形式存在;采用细磨、磁选方法进行选矿,磨矿细度达-0.074 mm占87.98%后,磨矿效率为平均每分钟-0.074 mm含量的增长率仅为0.913%;综合考虑磨矿成本与磁选指标,在选矿过程中,适宜的磨矿细度为-0.074 mm占72.76%,在此磨矿细度条件下,当磁感应强度为160 m T时,获得的铁精矿中铁品位为59.5%,铁回收率为95.70%,Ti O2品位为11.7%,Ti O2回收率为92.21%。  相似文献   

16.
某低品位钒钛磁铁矿含TFe 17.92%,含Ti O26.19%,采用干式预选抛尾—阶段磨矿阶段选别工艺后,获得了TFe品位60.57%、全流程铁回收率49.34%的铁精矿,铁精矿中含Ti O27.89%。在选铁过程中,经过干式粗粒抛尾以后,铁、钛、钒、铬、钪、钴、镍等元素皆主要在粗抛精矿中富集;经过湿式磁选以后,铁精矿中钒、铬得到了较好的富集,钴、镍有一定程度的富集,而钪主要富集在弱磁选尾矿中,硫在干式尾矿中含量较低,在铁精矿中有一定程度富集。  相似文献   

17.
针对密地选钛厂全浮选成本高、产品粒度偏细的问题,对TiO_2品位16.94%的粗粒一段强磁精矿开展了强磁选别工艺优化研究。试验结果表明:采用0.125 mm筛子进行分级,筛上物采用"螺旋+电选"流程、螺旋中矿和电选中矿以及粗渣经过强磁选别后与筛下物混合浮选的流程,可获得TiO_2品位47.67%、回收率34.25%的电选钛精矿与TiO_2品位47.18%、回收率34.83%的浮选钛精矿,即TiO_2品位47.42%、回收率69.08%的混合钛精矿。通过工艺优化,不仅降低了磨矿量,而且优化了最终产品粒级,为工业化生产提供了理论支撑。  相似文献   

18.
要:某含金铁矿石属于变质沉积型铁矿石,主要金属矿物为赤铁矿和磁铁矿,还含有品位为1.09×10-6的金。金矿物嵌布粒度极细且赋存在赤铁矿物中,使得金与铁很难分离。经过“(粗磨)弱磁选+(细磨)浮选+中强磁选”的联合选矿工艺试验流程,得到含金品位53.37×10-6、金选矿回收率60.47%的金精矿,得到含铁品位64.41%、铁选矿回收率75.51%、产率62.06%的铁精矿,选矿技术指标较好。磨矿细度对金矿物的回收和弱磁性铁矿物都至关重要,为了降低磨矿成本,采用阶段磨矿和阶段选别较为有利。  相似文献   

19.
对某含稀土、锆复杂铌矿进行了详尽的工艺矿物学研究,该矿可综合回收的元素为Nb,REO,Zr。主要的含铌矿物为褐铌钇矿,主要的稀土矿物为氟碳铈矿、独居石,主要的锆矿物为锆石。矿石中有用矿物种类多,嵌布粒度较细,赋存关系复杂。根据矿石性质并从可经济利用角度考虑,进行了抛尾预富集试验和重-磁-浮精选试验,最终确定在一段磨矿细度为-0.074 mm 55%时,采用磁选-重选联合流程,可抛除68%的尾矿;预富集得到的粗精矿经过再磨后分别回收稀土、铌和锆,再磨细度为-0.048 mm 80%,采用C7羟肟酸作为稀土矿捕收剂,经过一粗一扫五精浮选可得到品位47.85%,回收率61.50%的稀土精矿;浮选稀土尾矿采用苄基胂酸作为捕收剂浮选铌,经过一粗一扫四精-磁选流程精选,可得到Nb2O5品位53.04%,回收率68.88%的铌精矿;浮选尾矿再进行重选回收锆石,经过四次重选精选,可得到ZrO2的品位40.62%,回收率为52.79%的锆精矿。  相似文献   

20.
云锡某矿体储量五十万吨左右的高铁低锡矿,其含铁50%左右,主要以褐铁矿、赤铁矿的形式存在;含锡0.35%左右,主要以锡石的形式存在。对该矿种进行一定的探索试验,以寻求主要回收锡金属、综合回收铁金属的选矿工艺流程及可能达到的选矿指标。为回收该矿石中的有价元素锡、铁,分别进行了先重选锡后磁选铁、先磁选铁后重选锡两种工艺试验。结果表明,将原矿磨至-0.6mm时,经过1粗1精磁选得到磁性产品,非磁性产品经一段摇床、二段摇床选别得到粗锡精矿。结果获得含锡9.58%的锡粗精矿,锡回收率为60.57%;还可获得含铁59.00%的含铁物料,铁回收率为39.21%。总体指标较好,但需进一步提升铁回收率。试验结果可供该矿石选矿工艺的确定提供技术依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号