首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
采用以六偏磷酸钠为主、以四硼酸锂为辅的混合熔剂,控制稀释比为1∶12,研究了物料组成、灼烧变量、熔融制样温度、时间、脱模剂等对熔融制样及后续光谱分析的影响。建立的六偏磷酸钠熔融-XRF分析方法有效地解决了铬铁矿样品X射线荧光光谱分析中熔融制样受硼酸锂熔剂限制的问题,降低了样品稀释比。该方法简便、快速、准确,完全满足铬铁矿样品日常分析要求。  相似文献   

2.
稀土铝中间合金中稀土含量(质量分数,下同)一般约在0.5%~20%之间,文献中鲜见稀土铝中间合金标样和测定稀土含量大于10%的方法。实验通过选择钐的Lβ1线,镧、铈的Lα线,钇的Kα线,采用纯物质法配制标准溶液解决无标样问题,采用特散比法校正基体效应,对熔片条件以及仪器参数进行优化,建立了一套熔融制样-X射线荧光光谱法(XRF)测定稀土铝中间合金中镧、铈、钐、钇的方法。实验表明,称样0.2g,用5mL盐酸(1+1)熔样,四硼酸锂-偏硼酸锂混合熔剂熔融,稀释比选择1∶30,以4mL溴化铵溶液为脱模剂,控制熔样温度为1050℃,熔样时间为15min,熔样效果较好。实验方法应用于镧铝、铈铝、镧铈铝、钐铝、钇铝5类稀土铝中间合金中稀土元素的测定,测定结果与电感耦合等离子体原子发射光谱法(ICP-AES)结果基本一致,相对标准偏差(RSD)均在2%以下。方法可用于测定镧铝、铈铝、镧铈铝、钐铝、钇铝5类稀土铝中间合金中含量范围为0.5%~20%的镧、铈、钐、钇。  相似文献   

3.
李可及 《冶金分析》2014,34(4):6-10
建立了熔融制样-X射线荧光光谱法测定硫化铜钼矿中铜、钼、铁、硫、二氧化硅、氧化钙等主成分的分析方法。选择熔融制样作为前处理手段, 通过观察试验现象、分析各待测元素响应情况以优化实验参数。确定取样量为0.400 0 g, 氧化剂硝酸锂用量为2.000 0 g, 混合熔剂四硼酸锂/偏硼酸锂(m∶m =67∶33)用量为6.000 0 g, 预氧化时间为8 min, 熔融时间为8 min, 双向摆动熔融时间为4+2 min, 脱模剂为溴化锂的熔融条件。混合铜矿石、钼矿石国家标准物质配制具有浓度梯度的校准样品序列, 保证校准曲线线性范围涵盖硫化铜钼矿选矿流程样品中各目标成分的含量分布区间。方法检出限分别为14(铜)、24(钼)、85(铁)、31(硫)、56(二氧化硅)、70(氧化钙)μg/g。对2个混合样品进行了分析, 测定值与参考值相符, 结果的相对标准偏差(n=10)在0.09%~0.68%之间。  相似文献   

4.
王娟 《冶金分析》2020,40(6):62-67
为消除硅钙钡合金试样熔融制片时侵蚀铂-黄坩埚的难题,实验中硅钙钡样品以四硼酸锂-碳酸锂(m∶m=2∶1)为预氧化熔剂,在石墨垫底的瓷坩埚中高温熔融成熔球,再将熔球转到铂-黄坩埚中,再用四硼酸锂为熔剂熔融制成玻璃片,这样铂-黄坩埚在熔融制样过程中的腐蚀问题得到了有效解决,实现了熔融制样-X射线荧光光谱法(XRF)对硅钙钡合金中硅、钙、钡、磷、铝的测定。实验确定了最佳制样条件:0.2000g试样、2.0000g四硼酸锂、1.0000g碳酸锂在石墨垫底的瓷坩埚中,500℃灰化完全,900℃熔融15min,取出冷却;移入盛有3.0000g四硼酸锂的铂-黄坩埚中,加0.50mL 300g/L碘化钾脱模剂,在1150℃熔融15min,取出摇匀,再熔融15min,取出摇匀冷却,制得均匀玻璃片。实验方法选用具有适当梯度的硅钙钡合金标样和内控样绘制校准曲线,各待测元素校准曲线的相关系数r≥0.9997。精密度结果表明,各元素测定结果的相对标准偏差(RSD,n=10)在0.11%~5.9%;正确度结果表明,硅钙钡合金标样采用本法分析,其测定值与标准值相吻合。硅钙钡试样采用本法分析,其测定值与行业标准的分析值一致性较好,并进行了成对数据t检验,结果表明本法与行业标准分析方法无显著性差异,能满足日常生产检测要求。  相似文献   

5.
X射线荧光光谱分析法熔融制样技术的探讨与应用   总被引:2,自引:1,他引:1       下载免费PDF全文
本文选用三种不同熔融制样方式,研究了熔剂的性质、熔融制样的过程及加热方式等制样条件,探讨了X射线荧光光谱分析法的熔融制样技术。通过脱模剂加入量的试验,证明了在温度、熔融体流动性一致的情况下,挥发性脱模剂碘化铵可不必定量加入。针对铁矿石标准样品的特点,以四硼酸锂为熔剂,通过采用预氧化后高温熔融的制样程序,得到了优化的试验条件。结果表明,铁矿石试样熔融制样时间缩短至100 s/样,使得制样速度与粉末压片速度(90 s/样)相接近,优化条件后制样的相对标准偏差为0.4%~6.2%(n=10)。  相似文献   

6.
本文采用熔融制样X射线荧光光谱法测定菱镁石粉中的主要元素二氧化硅、氧化钙、氧化镁含量。利用X射线荧光分析仪中的"平衡"功能,对实际样品无需进行灼烧处理,相比于化学法,具有更加快速的实验效果,通过与化学法和标准物质进行验证,准确性能够满足要求,本法是采用四硼酸锂-偏硼酸锂混合熔剂直接与样品进行熔融,饱和溴化锂做为脱模剂。用菱镁石粉标样,水镁石和白云石混合标样建立分析曲线,对实际生产样品进行验证,准确性和精密度可达到日常检验要求。  相似文献   

7.
熔融制样-X射线荧光光谱法(XRF)测定硅铁合金样品,需重点解决样品前处理中合金样品侵蚀铂-黄坩埚的难题。硅铁样品以四硼酸锂-碳酸锂预氧化剂在石墨垫底瓷坩埚中高温预氧化熔融后,再将熔融物转移至铂-黄坩埚中,用四硼酸锂熔融制成玻璃熔片,实现了熔融制样-X射线荧光光谱法对硅铁合金中硅、磷、锰、铝、钙、铬的测定。实验讨论了预氧化熔融的熔剂体系及氧化方法、试样与熔剂的稀释比,结果表明,试样与熔剂以1∶35的稀释比,以10滴300g/L碘化钾溶液为脱模剂,在1100℃熔融30min,熔融制得的玻璃片均匀、透明、无气泡,符合测定要求。用具有浓度梯度的系列硅铁有证标准样品制作校准曲线,各待测元素校准曲线的线性相关系数均大于0.9995。方法应用于硅铁合金实际样品中硅、磷、锰、铝、钙、铬的测定, 结果的相对标准偏差(RSD,n=11)在0.1%~5.8%之间;正确度试验表明,硅铁标准样品的测定结果与认定值相符,硅铁实际样品的测定结果与国家标准方法测定值一致,能满足常规分析要求。  相似文献   

8.
X射线荧光光谱法测定锆矿中10种主次成分   总被引:1,自引:0,他引:1       下载免费PDF全文
采用四硼酸锂和偏硼酸锂混合熔剂熔融制样,利用X射线荧光光谱仪(XRF)测定锆矿中的ZrO2、HfO2、MgO、Al2O3、SiO2、P2O5、CaO、TiO2、Fe2O3、BaO等10种主次成分含量。利用锆矿标准物质及锆矿标准物质与基准试剂SiO2、Al2O3、TiO2、Fe2O3、CaCO3、KH2PO4、MgO、BaO、HfO2按一定比例混合配制的系列校准样品绘制校准曲线,满足各成分的含量梯度。选择0.450 0 g样品加入9.000 g混合熔剂(m四硼酸锂∶m偏硼酸锂=12∶22)、熔样时间为15 min、熔融温度为1 050 ℃、无需加脱模剂进行熔融,熔样效果好。选择ZrLα线避免了ZrKα线以及ZrKβ线穿透样片的问题;采用变异α系数校正基体效应。对锆矿石标准样品及自制校准样品进行分析,各成分的测定值与认定值或参考值相吻合;精密度考察结果表明各成分测定结果的相对标准偏差在0.29%~7.9%之间。  相似文献   

9.
张敏  陈赟  龚沂 《冶金分析》2015,35(10):54-59
采用四硼酸锂-偏硼酸锂混合熔剂[m(Li2B4O7)∶m(LiBO2)=67∶33],稀释比为8∶1,脱模剂为10滴300 g/L碘化铵溶液,预氧化温度和时间分别是600 ℃和200 s,熔融温度和时间分别为1 050 ℃和7.5 min的熔样条件,实现了熔融制样-X射线荧光光谱法(XRF)对石灰石和白云石中CaO、MgO、SiO2、Al2O3、Fe2O3、MnO、K2O、P2O5等组分的准确测定。选择石灰石、白云石标准样品及由标准样品人工合成的校准样品进行校准曲线的绘制,各组分的相关系数均可达到0.99以上。采用OXSAS软件提供的AC+MC综合模式进行谱线重叠干扰校正和基体校正,效果良好。选择标准样品进行精密度考察,各组分测定结果的相对标准偏差(RSD,n=12)均小于3%。石灰石、白云石标准样品和实际样品的测定结果与认定值或其他方法测定值进行比较,结果基本相符。  相似文献   

10.
采用熔融法制样,建立了测定化工产品钾冰晶石中氟、铝、钾、钠、氧化铁、氧化钛、氧化镁、氧化钙及硫酸根的X射线荧光光谱(XRF)分析方法。样品的熔融试验发现,以四硼酸锂和偏硼酸锂混合熔剂[m(四硼酸锂)∶m(偏硼酸锂)=67∶33]作熔剂,当样品与熔剂的稀释比为1.5∶10,以1滴饱和LiBr溶液为脱模剂,在1 000 ℃下熔融10 min时制样效果最佳。使用理论α系数法和经验系数法相结合的方法对谱线重叠及元素间的吸收增强效应进行校正。在没有国家标准样品的条件下,采用高纯的化学物质按不同比例混合制成的校准样品绘制校准曲线,其线性范围宽。精密度试验结果发现,各组分的相对标准偏差(RSD, n=11)在0.53%~9.8%之间。采用实验方法对钾冰晶石生产样品中上述9种成分进行测定,结果与其他方法测定结果相符。  相似文献   

11.
以碳酸锂和四硼酸锂为混合助熔剂,采用高温熔融制样,利用X射线荧光光谱仪测定铁矿石中的TFe、Si、Ca、Mg、Al、Mn、Ti、P含量。对试样与熔剂比例、熔样时间、内标元素等制样条件进行了讨论。结果表明,试样和熔剂的质量比1∶10、熔样时间15 min、Co2O3为内标物质为好,并运用Co内标法和数学法进行了重叠干扰和基体效应的校正。精密度试验表明,各元素相对标准偏差(n=10)值在0.08%~2.39%,用于实际标准样品测定,检测值与认定值结果相符。  相似文献   

12.
X射线荧光光谱法测定铜精矿中10种元素   总被引:1,自引:0,他引:1       下载免费PDF全文
采用铜精矿标准物质,及向标准物质中添加光谱纯物质或单元素标准溶液的方式拓宽校准曲线含量范围,以熔融法制样,用波长色散X射线荧光光谱法测定铜精矿中的铜、铅、铬、砷、银、锑、铋、镍、铁、铝等元素含量。通过试验确定的熔融条件如下:采用四硼酸锂-偏硼酸锂混合熔剂(m∶m=33∶ 67),稀释比为1∶20,预氧化时间为5 min,预氧化温度为700 ℃,熔融时间为10 min,熔融温度为1 000~1 050 ℃,以二氧化硅作为玻璃化试剂,加入3~4滴500 g/L溴化锂溶液作为脱模剂。共存元素和谱线重叠干扰使用理论影响系数法进行校正,检出限在12~156 μg/g之间。对一个铜精矿样品进行精密度考察,各元素测定结果的相对标准偏差(RSD,n=11)在0.19%~11.3%之间。3个铜精矿实际样品的测定值与标准分析方法测定值相符,满足铜精矿快速分析的要求。  相似文献   

13.
针对铜精矿熔融制样时硫含量高带来的问题,实验以四硼酸锂-偏硼酸锂(m∶m=12∶22)为熔剂,碳酸钠、二氧化硅和硝酸锂为助剂,建立了同时测定铜精矿中铜、硫、铁、锌、铝、镁、钙、铅和锰等主次成分含量的熔融制样-波长色散X射线荧光光谱法。通过研究不同氧化剂、助剂配方,熔融温度和时间对固硫和制片效率的影响,选定称量0.1g样品,6.9g四硼酸锂-偏硼酸锂混合熔剂(m∶m=12∶22),1.06g碳酸钠,0.38g二氧化硅,1.38g硝酸锂的熔剂配比和熔融介质条件,从室温升至600℃预氧化15min后,在960℃熔融5~8min制得玻璃熔片,经重量法和X射线荧光光谱法检测,硫回收率达到99%以上。采用有证标准物质和高纯度氧化铜混合配制出合适含量梯度的校准样品,经测量计算后校准曲线线性关系良好,线性相关系数(R2)达到0.999;通过标准物质验证及方法间比对,结果表明实验方法测定值与认定值相对偏差在0.43%~6.9%,对同一样品的检测结果与传统方法基本一致,可以满足铜精矿的快速检测要求。  相似文献   

14.
为解决铬矿熔样过程中难熔于熔剂、稀释比大以及产生气泡导致飞溅等问题,研究并绘制了三氧化二铬在不同熔剂体系中的溶解度曲线;考察了铬的不同价态对溶解度的影响。研究发现,铬矿难熔的原因主要是由于弱酸性三氧化二铬易熔于碱性熔剂,不易熔于酸性的硼酸盐熔剂;而六价铬由于碱性更强,更易熔于弱酸性的偏硼酸锂熔剂中。依据实验结果,提出采用质量比为3∶1的四硼酸锂与硝酸钠混合熔剂,在1 150 ℃熔融制样15 min,用X射线荧光光谱仪(XRF)对铬矿中铬、铁、硅、铝、磷元素进行同时测定的方法。对两个铬矿标准样品进行测定,测定值与认定值一致,相对标准偏差(n=6)为0.36%~1.4%。较传统制样方法,实验用熔样方法降低了稀释比,克服了偏磷酸盐熔样无法测定磷,硼酸盐熔样易结晶、无法精确测定铬等问题。  相似文献   

15.
样品采用硝酸溶解,加入氨水将待测物沉淀,用无灰滤纸过滤,滤渣经过灼烧后用四硼酸锂和偏硼酸锂混合熔剂熔制成试料片,以波长色散X射线荧光光谱仪进行检测,实现了熔融制样-X射线荧光光谱法测定镧铈镨钕稀土合金中镧、铈、镨、钕的含量。以高纯物质配制校准标样,并分别采用干扰系数法进行谱线重叠干扰校正和可变理论α影响系数法(COAL模式)进行基体效应校正。对方法的精密度和回收率进行考察,相对标准偏差(RSD,n=11)小于2%,回收率介于98%~101%之间。对镧铈镨钕稀土合金实际样品进行分析,测定结果同电感耦合等离子体原子发射光谱法的结果相一致。  相似文献   

16.
太井超  殷宏  闫学会 《天津冶金》2016,(4):59-60,70
采用熔融制样X射线荧光光谱法分析烧结矿中砷、铅、锌元素含量。采用硝酸锂作为氧化剂,四硼酸锂作为熔剂,饱和溴化锂作为脱模剂,高温熔融制样;以不同含量的烧结矿标准样品及有化学值的生产样品作为校准样品,建立分析曲线,通过校正,测定样品中的元素含量。该方法的测定结果与标样标准值及ICP法的测量结果一致,准确度及精确度较高,能够满足生产需求。  相似文献   

17.
熔融制样-X射线荧光光谱法(XRF)被应用到很多种类矿物样品中的主次组分的测试,但地矿实验室需要测试的矿物种类较多,单一的矿物种类测试很难满足测试需求。实验采用熔融制样法,以多种矿物标样及其混合标样为基础,建立了一种可用于多种类型矿物主要组分的X射线荧光光谱分析方法。实验确定熔融条件为样品量0.400 0 g,助熔剂为7.000 0 g四硼酸锂,加入4滴150 g/L溴化锂溶液为脱模剂,0.500 0 g硝酸锂氧化剂和0.400 0 g氟化锂流化剂。结果表明样品基体效应对测试结果影响不大。精密度考察发现:铝矿中主成分Al2O3、铁矿中主成分Fe、钙矿中主成分CaO、镁矿中主成分MgO、锰矿中主成分Mn的相对标准偏差(RSD,n=6)分别为0.49%、0.37%、0.64%、0.38%、0.85%。正确度考察发现:5种矿物样品中SiO2、Al2O3、Ca、MgO、Mn、Fe的测定值与其他方法测定值相吻合。方法采用一套标准样品可测试多种矿物样品中主要组分,适用于地矿实验室矿物样品分析。  相似文献   

18.
采用无水四硼酸锂熔融制样,建立了用波长色散X射线荧光光谱(XRF)法测定三氧化钼中MoO3、Pb、Cu、SiO2、CaO、Fe2O3、K2O 7种组分的方法。以Mo为主要分析元素分别对仪器参数、分析谱线、曲线拟合进行了研究,并详细讨论了熔融法制样条件中熔剂的选择、脱模剂的选择、熔融温度和熔融时间的确定。采用经过多次化学分析的样品作为标准样品绘制校准曲线并选择相应校正程序进行校正。该法用于三氧化钼样品的分析,结果同湿法分析数据相吻合,能满足生产中三氧化钼样品中七种组分分析的需要。  相似文献   

19.
李小青 《冶金分析》2018,38(6):39-42
为了解决锰铁、金属锰等合金试样玻璃熔融制片时侵蚀铂黄坩埚的难题,实验采用四硼酸锂-碳酸锂混合熔剂、五氧化二钒氧化剂在石墨垫底瓷坩埚中高温预氧化熔融,有效避免了熔融制样过程中铂金坩埚腐蚀的问题,建立了X射线荧光光谱法(XRF)测定锰铁、金属锰中锰、硅、磷的分析方法。讨论了预氧化熔融的熔剂体系及氧化方法、试样与熔剂的稀释比,结果表明,试样与四硼酸锂-碳酸锂混合熔剂以1∶45的稀释比、以0.5mL200g/L溴化锂溶液为脱模剂,在1120℃熔融制得的玻璃片均匀、透亮、无气泡,符合测定要求。精密度和正确度试验结果显示,各元素测定结果的相对标准偏差(RSD,n=10)在0.10%~0.96%之间,结果与锰铁标准物质、金属锰内控标样认定值(参考值)相符,完全满足常规分析要求。  相似文献   

20.
作为稀土工业的原料,稀土精矿中稀土总量的测定方法步骤多、流程长。实验采用熔融制样-X射线荧光光谱法测定轻稀土精矿中稀土总量,研究了制样和测量条件。准确称取6.000 0g无水四硼酸锂和偏硼酸锂混合熔剂(质量比2∶1)于铂黄坩埚中,以0.500 0g硝酸锂为氧化剂消除试样中还原物质对铂黄坩埚的侵蚀,称取0.600 0g稀土精矿试样,再于试样表面均匀覆盖0.500 0g氧化硼防止试样喷溅,滴加0.5mL 20mg/mL的溴化铵溶液作为脱模剂。将坩埚放进预加热到1 050℃的熔样机内熔融19min制备样片,可消除矿物效应、粒度效应及表面效应。通过各稀土元素X射线荧光谱线的选择减少谱线干扰,以经验系数法校正谱线干扰和基体效应,用稀土精矿标样建立各稀土元素校准曲线。各组分校准曲线的相关系数在0.991~0.999之间,试样重复测量的相对标准偏差(RSD)小于0.5%,稀土总量测定结果与重量法一致。方法的精密度和正确度能够满足生产要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号