首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
大屏数据可视化是对数据分析结果的表达,是数据赋能决策的重要环节.针对大屏数据可视化软件开发周期较长、成本较高等问题,本文基于Vue前端框架及Echarts可视化组件,研制开发了一个大屏数据可视化易用工具C317DataUI,通过对可视化组件拖拽式操作进行界面布局,使用组件的数据连接面板进行数据配置管理,并提供了部分场景...  相似文献   

2.
Weather conditions affect multiple aspects of human life such as economy, safety, security, and social activities. For this reason, weather forecast plays a major role in society. Currently weather forecasts are based on Numerical Weather Prediction (NWP) models that generate a representation of the atmospheric flow. Interactive visualization of geo‐spatial data has been widely used in order to facilitate the analysis of NWP models. This paper presents a visualization system for the analysis of spatio‐temporal patterns in short‐term weather forecasts. For this purpose, we provide an interactive visualization interface that guides users from simple visual overviews to more advanced visualization techniques. Our solution presents multiple views that include a timeline with geo‐referenced maps, an integrated webmap view, a forecast operation tool, a curve‐pattern selector, spatial filters, and a linked meteogram. Two key contributions of this work are the timeline with geo‐referenced maps and the curve‐pattern selector. The latter provides novel functionality that allows users to specify and search for meaningful patterns in the data. The visual interface of our solution allows users to detect both possible weather trends and errors in the weather forecast model. We illustrate the usage of our solution with a series of case studies that were designed and validated in collaboration with domain experts.  相似文献   

3.
A Visual Analytics Approach to Understanding Spatiotemporal Hotspots   总被引:1,自引:0,他引:1  
As data sources become larger and more complex, the ability to effectively explore and analyze patterns among varying sources becomes a critical bottleneck in analytic reasoning. Incoming data contain multiple variables, high signal-to-noise ratio, and a degree of uncertainty, all of which hinder exploration, hypothesis generation/exploration, and decision making. To facilitate the exploration of such data, advanced tool sets are needed that allow the user to interact with their data in a visual environment that provides direct analytic capability for finding data aberrations or hotspots. In this paper, we present a suite of tools designed to facilitate the exploration of spatiotemporal data sets. Our system allows users to search for hotspots in both space and time, combining linked views and interactive filtering to provide users with contextual information about their data and allow the user to develop and explore their hypotheses. Statistical data models and alert detection algorithms are provided to help draw user attention to critical areas. Demographic filtering can then be further applied as hypotheses generated become fine tuned. This paper demonstrates the use of such tools on multiple geospatiotemporal data sets.  相似文献   

4.
Parallel coordinate plots (PCPs) are commonly used in information visualization to provide insight into multi-variate data. These plots help to spot correlations between variables. PCPs have been successfully applied to unstructured datasets up to a few millions of points. In this paper, we present techniques to enhance the usability of PCPs for the exploration of large, multi-timepoint volumetric data sets, containing tens of millions of points per timestep. The main difficulties that arise when applying PCPs to large numbers of data points are visual clutter and slow performance, making interactive exploration infeasible. Moreover, the spatial context of the volumetric data is usually lost. We describe techniques for preprocessing using data quantization and compression, and for fast GPU-based rendering of PCPs using joint density distributions for each pair of consecutive variables, resulting in a smooth, continuous visualization. Also, fast brushing techniques are proposed for interactive data selection in multiple linked views, including a 3D spatial volume view. These techniques have been successfully applied to three large data sets: Hurricane Isabel (Vis'04 contest), the ionization front instability data set (Vis'08 design contest), and data from a large-eddy simulation of cumulus clouds. With these data, we show how PCPs can be extended to successfully visualize and interactively explore multi-timepoint volumetric datasets with an order of magnitude more data points.  相似文献   

5.
Cognitive biases are systematic errors in judgment due to an over‐reliance on rule‐of‐thumb heuristics. Recent research suggests that cognitive biases, like numerical anchoring, transfers to visual analytics in the form of visual anchoring. However, it is unclear how visualization users can be visually anchored and how the anchors affect decision‐making. To investigate, we performed a between‐subjects laboratory experiment with 94 participants to analyze the effects of visual anchors and strategy cues using a visual analytics system. The decision‐making task was to identify misinformation from Twitter news accounts. Participants were randomly assigned to conditions that modified the scenario video (visual anchor) and/or strategy cues provided. Our findings suggest that such interventions affect user activity, speed, confidence, and, under certain circumstances, accuracy. We discuss implications of our results on the forking paths problem and raise concerns on how visualization researchers train users to avoid unintentionally anchoring users and affecting the end result.  相似文献   

6.
Spatial selections are a ubiquitous concept in visualization. By localizing particular features, they can be analysed and compared in different views. However, the semantics of such selections often depend on specific parameter settings and it can be difficult to reconstruct them without additional information. In this paper, we present the concept of contextual snapshots as an effective means for managing spatial selections in visualized data. The selections are automatically associated with the context in which they have been created. Contextual snapshots can also be used as the basis for interactive integrated and linked views, which enable in‐place investigation and comparison of multiple visual representations of data. Our approach is implemented as a flexible toolkit with well‐defined interfaces for integration into existing systems. We demonstrate the power and generality of our techniques by applying them to several distinct scenarios such as the visualization of simulation data, the analysis of historical documents and the display of anatomical data.  相似文献   

7.
Probabilistic weather forecasts are amongst the most popular ways to quantify numerical forecast uncertainties. The analog regression method can quantify uncertainties and express them as probabilities. The method comprises the analysis of errors from a large database of past forecasts generated with a specific numerical model and observational data. Current visualization tools based on this method are essentially automated and provide limited analysis capabilities. In this paper, we propose a novel approach that breaks down the automatic process using the experience and knowledge of the users and creates a new interactive visual workflow. Our approach allows forecasters to study probabilistic forecasts, their inner analogs and observations, their associated spatial errors, and additional statistical information by means of coordinated and linked views. We designed the presented solution following a participatory methodology together with domain experts. Several meteorologists with different backgrounds validated the approach. Two case studies illustrate the capabilities of our solution. It successfully facilitates the analysis of uncertainty and systematic model biases for improved decision‐making and process‐quality measurements.  相似文献   

8.
The majority of display devices used in visualization are 2D displays. Inevitably, it is often necessary to overlay one piece of visual information on top of another, especially in applications such as multi‐field visualization and geo‐spatial information visualization. In this paper, we present a conceptual framework for studying the mechanisms for overlaying multiple pieces of visual information while allowing users to recover occluded information. We adopt the term ‘multiplexing’ from tele‐ and data communication to encompass all such overlapping mechanisms. We establish 10 categories of visual multiplexing mechanisms. We draw support evidence from both perception literature and existing works in visualization to support this conceptual framework. We examine the relationships between multiplexing and information theoretic measures. This new conceptual categorization provides the much‐needed theory of visualization with an integral component.  相似文献   

9.
可视化与可视分析已成为众多领域中结合人类智能与机器智能协同理解、分析数据的常见手段。人工智能可以通过对大数据的学习分析提高数据质量,捕捉关键信息,并选取最有效的视觉呈现方式,从而使用户更快、更准确、更全面地从可视化中理解数据。利用人工智能方法,交互式可视化系统也能更好地学习用户习惯及用户意图,推荐符合用户需求的可视化形式、交互操作和数据特征,从而降低用户探索的学习及时间成本,提高交互分析的效率。人工智能方法在可视化中的应用受到了极大关注,产生了大量学术成果。本文从最新工作出发,探讨人工智能在可视化流程的关键步骤中的作用。包括如何智能地表示和管理数据、如何辅助用户快速创建和定制可视化、如何通过人工智能扩展交互手段及提高交互效率、如何借助人工智能辅助数据的交互分析等。具体而言,本文详细梳理每个步骤中需要完成的任务及解决思路,介绍相应的人工智能方法(如深度网络结构),并以图表数据为例介绍智能可视化与可视分析的应用,最后讨论智能可视化方法的发展趋势,展望未来的研究方向及应用场景。  相似文献   

10.
Patterns exist in many contexts and they can be considered as knowledge sources providing useful information for our decision making. However, sometimes they are not easily identifiable and may not be visible. A visual interface for helping users to recognize patterns is needed. In this paper, we present a computer-based visual language called STVL to visualize spatiotemporal patterns. An event-anchored data set is processed to identify symbols of the language and those symbols are represented in a three-dimensional space consisting of latitude, longitude and time. The user then creates and modifies visual statements using interactive functions, which gives the dynamic syntax of the language. Visual reasoning is carried out in a cycle of interaction and meaningful visual statements are selected as spatiotemporal patterns. In this paper, we also present an application based on the STVL visual language, Pattern Browser, to demonstrate its applicability in information visualization.  相似文献   

11.
《Information Systems》2001,26(4):259-277
Collaborative decision making problems can be addressed through argumentative discourse and collaboration among the users involved. Consensus is achieved through the process of collaboratively considering alternative understandings of the problem, competing interests, priorities and constraints. The application of formal modeling and analysis tools to solve the related processes is impossible before the problem can be articulated in a concise and agreed upon manner. This paper describes Hermes, a system that augments classical decision making approaches by supporting argumentative discourse among decision makers. It is fully implemented in Java and runs on the Web, thus providing relatively inexpensive access to a broad public. Using an illustrative example, we present the argumentation elements, discourse acts and reasoning mechanisms involved in Hermes. We also describe the integration of advanced features to the system; these enable users to retrieve data stored in remote databases in order to further warrant their arguments, and stimulate them to perform acts that best reflect their interests and intentions.  相似文献   

12.
Lark: Coordinating Co-located Collaboration with Information Visualization   总被引:1,自引:0,他引:1  
Large multi-touch displays are expanding the possibilities of multiple-coordinated views by allowing multiple people to interact with data in concert or independently. We present Lark, a system that facilitates the coordination of interactions with information visualizations on shared digital workspaces. We focus on supporting this coordination according to four main criteria: scoped interaction, temporal flexibility, spatial flexibility, and changing collaboration styles. These are achieved by integrating a representation of the information visualization pipeline into the shared workspace, thus explicitly indicating coordination points on data, representation, presentation, and view levels. This integrated meta-visualization supports both the awareness of how views are linked and the freedom to work in concert or independently. Lark incorporates these four main criteria into a coherent visualization collaboration interaction environment by providing direct visual and algorithmic support for the coordination of data analysis actions over shared large displays.  相似文献   

13.
14.
People are becoming increasingly sophisticated in their ability to navigate information spaces using search, hyperlinks, and visualization. But, mobile phones preclude the use of multiple coordinated views that have proven effective in the desktop environment (e.g., for business intelligence or visual analytics). In this work, we propose to model information as multivariate heterogeneous networks to enable greater analytic expression for a range of sensemaking tasks while suggesting a new, list-based paradigm with gestural navigation of structured information spaces on mobile phones. We also present a mobile application, called Orchard, which combines ideas from both faceted search and interactive network exploration in a visual query language to allow users to collect facets of interest during exploratory navigation. Our study showed that users could collect and combine these facets with Orchard, specifying network queries and projections that would only have been possible previously using complex data tools or custom data science.  相似文献   

15.
秦绪佳  单扬洋  徐菲  郑红波  张美玉 《计算机科学》2018,45(12):262-267, 287
针对全国各省份垃圾处理方式的数据,提出一种混合可视分析方法。为了从多角度分析数据,混合U矩阵、平行坐标以及Small-Multiple 3种可视化技术,设计并实现了3种可视化视图的交互联动。首先,对数据进行聚类处理,将各省份近年的垃圾处理方式划分类别,采用SOM神经网络聚类算法实现聚类。然后,针对SOM聚类结果,采用U矩阵的方式进行可视化,并采用平行坐标描述每个聚类结果的各个属性。为了分析数据的地理属性及时序属性,采用Small-Multiple可视化技术。最后,实现多视图联动、刷新技术等交互方式,帮助用户自行探索数据,实现多视图的交互展示与分析。实验表明,这种混合可视方式可达到较好的多属性交互可视化效果,能够帮助用户了解并分析我国垃圾处理方式的分布及趋势。  相似文献   

16.
Shimomura  T. Isoda  S. 《Software, IEEE》1991,8(3):44-51
Recent extensions to the VIPS debugger are described. In the original version of VIPS, visualization of linked structures was limited to very small lists or to selected portions of larger structures. The newer version of VIPS extends the original work by adding multiple levels of browsers, letting users interactively identify sublists of interest. Animation facilities support the visualization of dynamic list operations simultaneously among the various views. A preliminary evaluation shows that VIPS helps users find bugs about 30% faster using about 25% fewer debugging commands than Dbxtool, and it can display even a large linked list within about one second  相似文献   

17.
The distribution of visual attention can be evaluated using eye tracking, providing valuable insights into usability issues and interaction patterns. However, when used in real, augmented, and collaborative environments, new challenges arise that go beyond desktop scenarios and purely virtual environments. Toward addressing these challenges, we present a visualization technique that provides complementary views on the movement and eye tracking data recorded from multiple people in real-world environments. Our method is based on a space-time cube visualization and a linked 3D replay of recorded data. We showcase our approach with an experiment that examines how people investigate an artwork collection. The visualization provides insights into how people moved and inspected individual pictures in their spatial context over time. In contrast to existing methods, this analysis is possible for multiple participants without extensive annotation of areas of interest. Our technique was evaluated with a think-aloud experiment to investigate analysis strategies and an interview with domain experts to examine the applicability in other research fields.  相似文献   

18.
We present the results from a qualitative and quantitative user study comparing fishtank virtual-reality (VR) and CAVE displays. The results of the qualitative study show that users preferred the fishtank VR display to the CAVE system for our scientific visualization application because of perceived higher resolution, brightness and crispness of imagery, and comfort of use. The results of the quantitative study show that users performed an abstract visual search task significantly more quickly and more accurately on the fishtank VR display system than in the CAVE. The same study also showed that visual context had no significant effect on task performance for either of the platforms. We suggest that fishtank VR displays are more effective than CAVEs for applications in which the task occurs outside the user's reference frame, the user views and manipulates the virtual world from the outside in, and the size of the virtual object that the user interacts with is smaller than the user's body and fits into the fishtank VR display. The results of both studies support this proposition.  相似文献   

19.
Multivariate volume visualization is important for many applications including petroleum exploration and medicine. State‐of‐the‐art tools allow users to interactively explore volumes with multiple linked parameter‐space views. However, interactions in the parameter space using trial‐and‐error may be unintuitive and time consuming. Furthermore, switching between different views may be distracting. In this paper, we propose GuideME: a novel slice‐guided semiautomatic multivariate volume exploration approach. Specifically, the approach comprises four stages: attribute inspection, guided uncertainty‐aware lasso creation, automated feature extraction and optional spatial fine tuning and visualization. Throughout the exploration process, the user does not need to interact with the parameter views at all and examples of complex real‐world data demonstrate the usefulness, efficiency and ease‐of‐use of our method.  相似文献   

20.
The analysis and exploration of multidimensional and multivariate data is still one of the most challenging areas in the field of visualization. In this paper, we describe an approach to visual analysis of an especially challenging set of problems that exhibit a complex internal data structure. We describe the interactive visual exploration and analysis of data that includes several (usually large) families of function graphs fi(x, t). We describe analysis procedures and practical aspects of the interactive visual analysis specific to this type of data (with emphasis on the function graph characteristic of the data). We adopted the well-proven approach of multiple, linked views with advanced interactive brushing to assess the data. Standard views such as histograms, scatterplots, and parallel coordinates are used to jointly visualize data. We support iterative visual analysis by providing means to create complex, composite brushes that span multiple views and that are constructed using different combination schemes. We demonstrate that engineering applications represent a challenging but very applicable area for visual analytics. As a case study, we describe the optimization of a fuel injection system in diesel engines of passenger cars  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号