首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 40 毫秒
1.
Transport of uranium within surface and subsurface environments is predicated largely on its redox state. Uranyl reduction may transpire through either biotic (enzymatic) or abiotic pathways; in either case, reduction of U(VI) to U(IV) results in the formation of sparingly soluble UO2 precipitates. Biological reduction of U(VI), while demonstrated as prolific under both laboratory and field conditions, is influenced by competing electron acceptors (such as nitrate, manganese oxides, or iron oxides) and uranyl speciation. Formation of Ca-UO2-CO3 ternary complexes, often the predominate uranyl species in carbonate-bearing soils and sediments, decreases the rate of dissimilatory U(VI) reduction. The combined influence of uranyl speciation within a mineralogical matrix comparable to natural environments and under hydrodynamic conditions, however, remains unresolved. We therefore examined uranyl reduction by Shewanella putrefaciens within packed mineral columns of ferrihydrite-coated quartz sand under conditions conducive or nonconducive to Ca-UO2-CO3 species formation. The results are dramatic. In the absence of Ca, where uranyl carbonato complexes dominate, U(VI) reduction transpires and consumes all of the U(VI) within the influent solution (0.166 mM) over the first 2.5 cm of the flow field for the entirety of the 54 d experiment. Over 2 g of U is deposited during this reaction period, and despite ferrihydrite being a competitive electron acceptor, uranium reduction appears unabated for the duration of our experiments. By contrast, in columns with 4 mM Ca in the influent solution (0.166 mM uranyl), reduction (enzymatic or surface-bound Fe(III) mediated) appears absent and breakthrough occurs within 18 d (at a flow rate of 3 pore volumes per day). Uranyl speciation, and in particular the formation of ternary Ca-UO2-CO3 complexes, has a profound impact on U(VI) reduction and thus transport within anaerobic systems.  相似文献   

2.
Sequestration of uranium (U) by magnetite is a potentially important sink for U in natural and contaminated environments. However, molecular-scale controls that favor U(VI) uptake including both adsorption of U(VI) and reduction to U(IV) by magnetite remain poorly understood, in particular, the role of U(VI)-CO(3)-Ca complexes in inhibiting U(VI) reduction. To investigate U uptake pathways on magnetite as a function of U(VI) aqueous speciation, we performed batch sorption experiments on (111) surfaces of natural single crystals under a range of solution conditions (pH 5 and 10; 0.1 mM U(VI); 1 mM NaNO(3); and with or without 0.5 mM CO(3) and 0.1 mM Ca) and characterized surface-associated U using grazing incidence extended X-ray absorption fine structure spectroscopy (GI-EXAFS), grazing incidence X-ray diffraction (GI-XRD), and scanning electron microscopy (SEM). In the absence of both carbonate ([CO(3)](T), denoted here as CO(3)) and calcium (Ca), or in the presence of CO(3) only, coexisting adsorption of U(VI) surface species and reduction to U(IV) occurs at both pH 5 and 10. In the presence of both Ca and CO(3), only U(VI) adsorption (VI) occurs. When U reduction occurs, nanoparticulate UO(2) forms only within and adjacent to surface microtopographic features such as crystal boundaries and cracks. This result suggests that U reduction is limited to defect-rich surface regions. Further, at both pH 5 and 10 in the presence of both CO(3) and Ca, U(VI)-CO(3)-Ca ternary surface species develop and U reduction is inhibited. These findings extend the range of conditions under which U(VI)-CO(3)-Ca complexes inhibit U reduction.  相似文献   

3.
Pyrolusite (beta-MnO2(s)) was used to assess the influence of a competitive electron acceptor on the kinetics of reduction of aqueous uranyl carbonate by a dissimilatory metal-reducing bacterium (DMRB), Shewanella putrefaciens strain CN32. The enzymatic reduction of U(VI) and beta-MnO2(s) and the abiotic redox reaction between beta-MnO2(s) and biogenic uraninite (UO2(s)) were independently investigated to allow for interpretation of studies of U(VI) bioreduction in the presence of beta-MnO2(s). Uranyl bioreduction to UO2(s) by CN32 with H2 as the electron donor followed Monod kinetics, with a maximum specific reduction rate of 110 M/h/10(8) cells/mL and a half-saturation constant of 370 microM. The bioreduction rate of beta-MnO2(s) by CN32 was described by a pseudo-first-order model with respect to beta-MnO2(s) surface sites, with a rate constant of 7.92 x 10(-2) h(-1)/10(8) cells/mL. Uraninite that precipitated as a result of microbial U(VI) reduction was abiotically reoxidized to U(VI) by beta-MnO2(s), with concomitant reduction to Mn(II). The oxidation of biogenic UO2(s) coupled with beta-MnO2(s) reduction was well-described by an electrochemical model. However, a simple model that coupled the bacterial reduction of U(VI) and beta-MnO2(s) with an abiotic redox reaction between UO2(s) and beta-MnO2(s) failed to describe the mass loss of U(VI) in the presence of beta-MnO2(s). Transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS) revealed that the particle size and spatial distribution of the biogenic UO2(s) changed dynamically in systems with, as compared to without, beta-MnO2(s)). These observations suggested that the surface properties and localization of UO2(s) in relation to the cell and beta-MnO2(s) surfaces was an important factor controlling the abiotic oxidation of UO2(s) and, thus, the overall rate and extent of U(VI) bioreduction. The coupled model that was modified to account for the "effective" contact surface area between UO2(s) and beta-MnO2(s) significantly improved the simulation of microbial reduction of U(VI) in the presence of beta-MnO2(s).  相似文献   

4.
Ambient and liquid helium temperature laser-induced time-resolved uranyl fluorescence spectroscopy was applied to study the speciation of aqueous uranyl solutions containing carbonate and phosphate and two porewater samples obtained by ultracentrifugation of U(VI)-contaminated sediments. The significantly enhanced fluorescence signal intensity and spectral resolution found at liquid helium temperature allowed, for the first time, direct fluorescence spectroscopic observation of the higher aqueous uranyl complexes with carbonate: UO2(CO3)2(2-), UO2(CO3)3(4-), and (UO2)2(OH)3CO3-. The porewater samples were nonfluorescent at room temperature. However, at liquid helium temperature, both porewater samples displayed strong, well-resolved fluorescence spectra. Comparisons of the spectroscopic characteristics of the porewaters with those of the standard uranyl-carbonate complexes confirmed that U(VI) in the porewaters existed primarily as UO2(CO3)3(4-) along with a small amount of other minor components, such as dicalcium-urano-tricarbonate complex, Ca2UO2(CO3)3, consistent with thermodynamic calculation. The U(VI)-carbonate complex is apparently the mobile species responsible for the subsurface migration of U(VI), even though the majority of the in-ground U(VI) inventory at the site from which the samples were obtained exists as intragrain U(VI)-silicate precipitates.  相似文献   

5.
Sorption of contaminants onto mineral surfaces is an important process that can restrict their transport in the environment. In the current study, uranium (U) uptake on magnetite (111) was measured as a function of time and solution composition (pH, [CO(3)](T), [Ca]) under continuous batch-flow conditions. We observed, in real-time and in situ, adsorption and reduction of U(VI) and subsequent growth of UO(2) nanoprecipitates using atomic force microscopy (AFM) and newly developed batch-flow U L(III)-edge grazing-incidence X-ray absorption spectroscopy near-edge structure (GI-XANES) spectroscopy. U(VI) reduction occurred with and without CO(3) present, and coincided with nucleation and growth of UO(2) particles. When Ca and CO(3) were both present no U(VI) reduction occurred and the U surface loading was lower. In situ batch-flow AFM data indicated that UO(2) particles achieved a maximum height of 4-5 nm after about 8 h of exposure, however, aggregates continued to grow laterally after 8 h reaching up to about 300 nm in diameter. The combination of techniques indicated that U uptake is divided into three-stages; (1) initial adsorption of U(VI), (2) reduction of U(VI) to UO(2) nanoprecipitates at surface-specific sites after 2-3 h of exposure, and (3) completion of U(VI) reduction after ~6-8 h. U(VI) reduction also corresponded to detectable increases in Fe released to solution and surface topography changes. Redox reactions are proposed that explicitly couple the reduction of U(VI) to enhanced release of Fe(II) from magnetite. Although counterintuitive, the proposed reaction stoichiometry was shown to be largely consistent with the experimental results. In addition to providing molecular-scale details about U sorption on magnetite, this work also presents novel advances for collecting surface sensitive molecular-scale information in real-time under batch-flow conditions.  相似文献   

6.
The influence of calcite and dissolved calcium on U(VI) adsorption was investigated using a calcite-containing sandy silt/clay sediment from the U. S. Department of Energy Hanford site. U(VI) adsorption to sediment, treated sediment, and sediment size fractions was studied in solutions that both had and had not been preequilibrated with calcite, at initial [U(VI)] = 10(-7)-10(-5) mol/L and final pH = 6.0-10.0. Kinetic and reversibility studies (pH 8.4) showed rapid sorption (30 min), with reasonable reversibility in the 3-day reaction time. Sorption from solutions equilibrated with calcite showed maximum U(VI) adsorption at pH 8.4 +/- 0.1. In contrast, calcium-free systems showed the greatest adsorption at pH 6.0-7.2. At pH > 8.4, U(VI) adsorption was identical from calcium-free and calcium-containing solutions. For calcite-presaturated systems, both speciation calculations and laser-induced fluorescence spectroscopic analyses indicated that aqueous U(VI) was increasingly dominated by Ca2UO2(CO3)3(0)(aq) at pH < 8.4 and thatformation of Ca2UO2(CO3)3(0)(aq) is what suppresses U(VI) adsorption. Above pH 8.4, aqueous U(VI) speciation was dominated by UO2(CO3)3(4-) in all solutions. Finally, results also showed that U(VI) adsorption was additive in regard to size fraction but not in regard to mineral mass: Carbonate minerals may have blocked U(VI) access to surfaces of higher sorption affinity.  相似文献   

7.
Uranium mobility in the environment is partially controlled by its oxidation state, where it exists as either U(VI) or U(IV). In aerobic environments, uranium is generally found in the hexavalent form, is quite soluble, and readily forms complexes with carbonate and calcium. Under anaerobic conditions, common metal respiring bacteria can reduce soluble U(VI) species to sparingly soluble UO2 (uraninite); stimulation of these bacteria, in fact, is being explored as an in situ uranium remediation technique. However, the stability of biologically precipitated uraninite within soils and sediments is not well characterized. Here we demonstrate that uraninite oxidation by Fe(III) (hydr)oxides is thermodynamically favorable under limited geochemical conditions. Our analysis reveals that goethite and hematite have a limited capacity to oxidize UO2(biogenic) while ferrihydrite can lead to UO2(biogenic) oxidation. The extent of UO2(biogenic) oxidation by ferrihydrite increases with increasing bicarbonate and calcium concentration, but decreases with elevated Fe(II)(aq) and U(VI)(aq) concentrations. Thus, our results demonstrate that the oxidation of UO2(biogenic) by Fe(III) (hydr)oxides may transpire under mildly reducing conditions when ferrihydrite is present.  相似文献   

8.
The molecular-scale immobilization mechanisms of uranium uptake in the presence of phosphate and goethite were examined by extended X-ray absorption fine structure (EXAFS) spectroscopy. Wet chemistry data from U(VI)-equilibrated goethite suspensions at pH 4-7 in the presence of ~100 μM total phosphate indicated changes in U(VI) uptake mechanisms from adsorption to precipitation with increasing total uranium concentrations and with increasing pH. EXAFS analysis revealed that the precipitated U(VI) had a structure consistent with the meta-autunite group of solids. The adsorbed U(VI), in the absence of phosphate at pH 4-7, formed bidentate edge-sharing, ≡ Fe(OH)(2)UO(2), and bidentate corner-sharing, (≡ FeOH)(2)UO(2), surface complexes with respective U-Fe coordination distances of ~3.45 and ~4.3 ?. In the presence of phosphate and goethite, the relative amounts of precipitated and adsorbed U(VI) were quantified using linear combinations of the EXAFS spectra of precipitated U(VI) and phosphate-free adsorbed U(VI). A U(VI)-phosphate-Fe(III) oxide ternary surface complex is suggested as the dominant species at pH 4 and total U(VI) of 10 μM or less on the basis of the linear combination fitting, a P shell indicated by EXAFS, and the simultaneous enhancement of U(VI) and phosphate uptake on goethite. A structural model for the ternary surface complex was proposed that included a single phosphate shell at ~3.6 ? (U-P) and a single iron shell at ~4.3 ? (U-Fe). While the data can be explained by a U-bridging ternary surface complex, (≡ FeO)(2)UO(2)PO(4), it is not possible to statistically distinguish this scenario from one with P-bridging complexes also present.  相似文献   

9.
The dissolution of UO(2) in a continuously stirred tank reactor (CSTR) in the presence of Ca(2+) and Zn(2+) was investigated under experimental conditions relevant to contaminated groundwater systems. Complementary experiments were performed to investigate the effect of adsorption and precipitation reactions on UO(2) dissolution. The experiments were performed under anoxic and oxic conditions. Zn(2+) had a much greater inhibitory effect on UO(2) dissolution than did Ca(2+). This inhibition was most substantial under oxic conditions, where the experimental rate of UO(2) dissolution was 7 times lower in the presence of Ca(2+) and 1450 times lower in the presence of Zn(2+) than in water free of divalent cations. EXAFS and solution chemistry analyses of UO(2) solids recovered from a Ca experiment suggest that a Ca-U(VI) phase precipitated. The Zn carbonate hydrozincite [Zn(5)(CO(3))(2)(OH)(6)] or a structurally similar phase precipitated on the UO(2) solids recovered from experiments performed in the presence of Zn. These precipitated Ca and Zn phases can coat the UO(2) surface, inhibiting the oxidative dissolution of UO(2). Interactions with divalent groundwater cations have implications for the longevity of UO(2) and the mobilization of U(VI) from these solids in remediated subsurface environments, waste disposal sites, and natural uranium ores.  相似文献   

10.
Elevated concentrations of U in contaminated environments necessitate understanding controls on its solubility in groundwaters. Here, calculations were performed to compare U(VI) concentrations expected in typical oxidizing groundwaters in equilibrium with different U(VI) minerals. Among common U(VI) minerals, only tyuyamunite (Ca(UO(2))(2)V(2)O(8)·8H(2)O), uranophane (Ca(UO(2))(2)(SiO(3)OH)(2)·5H(2)O), and a putative well-crystallized becquerelite (Ca(UO(2))(6)O(4)(OH)(6)·8H(2)O) were predicted to control U concentrations around its maximum contaminant level (MCL = 0.13 μM), albeit over narrow ranges of pH. Given the limited information available on uranyl vanadates, room temperature Ca-U-V precipitation experiments were conducted in order to compare aqueous U concentrations with tyuyamunite equilibrium predictions. Measured U concentrations were in approximate agreement with predictions based on Langmuir's estimated ΔG(f)°, although the precipitated solids were amorphous and had wide ranges of Ca/U/V molar ratios. Nevertheless, high initial U concentrations were decreased to below the MCL over the pH range 5.5-6.5 in the presence of newly formed CaUV solids, indicating that such solids can be important in controlling U in some environments.  相似文献   

11.
Green rusts, which are mixed ferrous/ferric hydroxides, are found in many suboxic environments and are believed to play a central role in the biogeochemistry of Fe. Analysis by U LIII-edge X-ray absorption near edge spectroscopy of aqueous green rust suspensions spiked with uranyl (U(VI)) showed that U(VI) was readily reduced to U(IV) by green rust The extended X-ray absorption fine structure (EXAFS) date for uranium reduced by green rust indicate the formation of a UO2 phase. A theoretical model based on the crystal structure of UO2 was generated by using FEFF7 and fitted to the data for the UO2 standard and the uranium in the green rust samples. The model fits indicate that the number of nearest-neighbor uranium atoms decreases from 12 for the UO2 structure to 5.4 forthe uranium-green rust sample. With an assumed four near-neighbor uranium atoms per uranium atom on the surface of UO2, the best-fit value for the average number of uranium atoms indicates UO2 particles with an average diameter of 1.7 +/- 0.6 nm. The formation of nanometer-scale particles of UO2, suggested by the modeling of the EXAFS data, was confirmed by high-resolution transmission electron microscopy, which showed discrete particles (approximately 2-9 nm in diameter) of crystalline UO2. Our results clearly indicate that U(VI) (as soluble uranyl ion) is readily reduced by green rust to U(IV) in the form of relatively insoluble UO2 nanoparticles, suggesting that the presence of green rusts in the subsurface may have significant effects on the mobility of uranium, particularly under iron-reducing conditions.  相似文献   

12.
Natural humics impact uranium bioreduction and oxidation   总被引:3,自引:0,他引:3  
Although humic substances occur ubiquitously in soil and groundwater, their effect on the biological reduction of uranium(VI) and subsequent reoxidation of U(IV) is poorly understood. This study investigated the role of humics in enhancing the bioreduction of U(VI) in laboratory kinetic studies, in field push-pull tests, and in the presence or absence of metal ions such as Ca2+ and Ni2+, which are known to inhibit the biological reduction of U(VI). Results from laboratory experiments indicate that, under strict anaerobic conditions, the presence of humic materials enhanced the U(VI) reduction rates (up to 10-fold) and alleviated the toxicity effect of Ni2+ on microorganisms. Humic acid was found to be more effective than fulvic acid in enhancing the reduction of U(VI). Such an enhancement effect is attributed to the ability of these humics in facilitating electron-transfer reactions and/or in complexing Ca2+ and Ni2+ ions. Similarly, field push-pull tests demonstrated a substantially increased rate of U(VI) reduction when humic acid was introduced into the site groundwater. However, humics were also found to form complexes with reduced U(IV) and increased the oxidation of U(IV) (when exposed to oxygen) with an oxidation halflife on the order of a few minutes. Both of these processes render uranium soluble and potentially mobile in groundwater, depending on site-specific and dynamic geochemical conditions. Future studies must address the stability and retention of reduced U(IV) under realistic field conditions (e.g., in the presence of dissolved oxygen and low concentrations of complexing organics).  相似文献   

13.
Reductive bioremediation is currently being explored as a possible strategy for uranium-contaminated aquifers such as the Old Rifle site (Colorado). The stability of U(IV) phases under oxidizing conditions is key to the performance of this procedure. An in situ method was developed to study oxidative dissolution of biogenic uraninite (UO?), a desirable U(VI) bioreduction product, in the Old Rifle, CO, aquifer under different variable oxygen conditions. Overall uranium loss rates were 50-100 times slower than laboratory rates. After accounting for molecular diffusion through the sample holders, a reactive transport model using laboratory dissolution rates was able to predict overall uranium loss. The presence of biomass further retarded diffusion and oxidation rates. These results confirm the importance of diffusion in controlling in-aquifer U(IV) oxidation rates. Upon retrieval, uraninite was found to be free of U(VI), indicating dissolution occurred via oxidation and removal of surface atoms. Interaction of groundwater solutes such as Ca2? or silicate with uraninite surfaces also may retard in-aquifer U loss rates. These results indicate that the prolonged stability of U(IV) species in aquifers is strongly influenced by permeability, the presence of bacterial cells and cell exudates, and groundwater geochemistry.  相似文献   

14.
The formation of and stability constants for aqueous Mg-UO2-CO3 complexes were determined using an anion exchange method. Magnesium concentration was varied (up to 20 mmol/L) at constant ionic strength (I = 0.101, 0.202, 0.304, 0.406, and 0.509 mol/kg NaNO3), pH 8.1, total [U(VI)] = 10.4 micromol/L under equilibrium with atmospheric CO2. The results indicate that only the MgUO2(CO3)3(2-) complex is formed. The cumulative formation constant extrapolated to zero ionic strength is similar regardless of the activity correction convention used: logbeta113(0) = 25.8 +/- 0.5 using the Davies equation and = 25.02 +/- 0.08 using specific ion interaction theory (SIT). Uranium sorption onto the exchange resin decreased in the presence of Mg putatively due to the formation of MgUO2(CO3)3(2-) that had a lower affinity for the resin than UO2(CO3)3(4-). Uranium sorption results are consistent with an equivalent anion exchange reaction between NO3- and UO2(CO3)3(4-) species to retain charge neutrality regardless of Mg concentration. No Mg was associated with the anion exchange resin indicating that the MgUO2(CO3)3(2-) complex did not sorb.  相似文献   

15.
Aqueous U(VI) reduction by hydrogen sulfide was investigated by batch experiments and speciation modeling; product analysis by transmission electron microscopy (TEM) was also performed. The molar ratio of U(VI) reduced to sulfide consumed, and the TEM result suggested that the reaction stoichiometry could be best represented by UO2(2+) + HS- = UO2+ S* + H+. At pH 6.89 and total carbonate concentration ([CO32-]T) of 4.0 mM, the reaction took place according to the following kinetics: -d[U(VI)]/dt = 0.0103[U(VI)][S2-]T0.54 where [U(VI)] is the concentration of hexavalent uranium, and [S2-]T is the total concentration of sulfide. The kinetics of U(VI) reduction was found to be largely controlled by [CO32-]T (examined from 0.0 to 30.0 mM) and pH (examined from 6.37 to 9.06). The reduction was almost completely inhibited with the following [CO32-]T and pH combinations: [(> or = 15.0 mM, pH 6.89); (> or = 4.0 mM, pH 8.01); and (> or = 2.0 mM, pH 9.06)]. By comparing the experimental results with the calculated speciation of U(VI), it was found that there was a strong correlation between the measured initial reaction rates and the calculated total concentrations of uranium-hydroxyl species; we, therefore, concluded that uranium-hydroxyl species were the ones being reduced by sulfide, not the dominant U-carbonate species present in many carbonate-containing systems.  相似文献   

16.
Carbonate dramatically affects the adsorption of uranium (U(VI)) onto iron hydroxides and its mobility in the natural environment. Batch tests, zeta potential measurements, and Fourier transform infrared (FTIR) spectroscopic studies were utilized to characterize the nature of U(VI) adsorption on ferrihydrite. Adsorption isotherms demonstrated that carbonate had a negative effect on U(VI) adsorption on ferrihydrite at pH > 6. Zeta potential measurements indicated that U(VI) was adsorbed as a cationic species (SO-UO2+) in the absence of carbonate and as anionic U(VI) complexes in the presence of carbonate at neutral pH. FTIR spectroscopic measurement of adsorbed U(VI) suggested that it was retained as uranyl carbonate complexes in the presence of carbonate. An increase in carbonate concentration caused a shift in the antisymmetric stretching vibration of the uranyl (UO2(2+)) U-O bond toward lower wavenumbers, which indicated an increasing carbonate effect in the adsorbed uranyl carbonate complexes. The adsorbed U(VI) species were successfully incorporated into a surface complexation model to describe the adsorption of U(VI) by ferrihydrite from artificial solutions and contaminated water.  相似文献   

17.
To experimentally identify both clay sorption sites and sorption equilibria and to understand the retention mechanisms at a molecular level, we have characterized the structure of hexavalent uranium surface complexes resulting from the interaction between the uranyl ions and the surface retention groups of a montmorillonite clay. We have performed laser-induced fluorescence spectroscopy (LIFS) and X-ray photoelectron spectroscopy (XPS) on uranyl ion loaded montmorillonite. These structural results were then compared to those obtained from the study of uranyl ions sorbed onto an alumina and also from U(VI) sorbed on an amorphous silica. This experimental approach allowed for a clear determination of the reactive surface sites of montmorillonite for U(VI) sorption. The lifetime values and the U4f XPS spectra of uranium(VI) sorbed on montmorillonite have shown that this ion is sorbed on both exchange and edge sites. The comparison of U(VI)/clay and U(VI)/oxide systems has determined that the interaction between uranyl ions and montmorillonite edge sites occurs via both [triple bond]AlOH and [triple bond]SiOH surface groups and involves three distinct surface complexes. The surface complexation modeling of the U(VI)/montmorillonite sorption edges was determined using the constant capacitance model and the above experimental constraints. The following equilibria were found to account for the uranyl sorption mechanisms onto montmorillonite for metal concentrations ranged from 10(-6) to 10(-3) M and two ionic strengths (0.1 and 0.5 M): 2[triple bond]XNa + UO2(2+) <==> ([triple bond]X)2UO2 + 2Na+, log K0(exch) = 3.0; [triple bond]Al(OH)2 + UO2(2+) <==> [triple bond]Al(OH)2UO2(2+), log K0(Al) = 14.9; [triple bond]Si(OH)2 + UO2(2+) <==> [triple bond]SiO2UO2 + 2H+, log K0(Si1) = -3.8; and [triple bond]Si(OH)2 + 3UO2(2+) + 5H2O <==> [triple bond]SiO2(UO2)3(OH)5- + 7H+, log K0(Si2) = -20.0.  相似文献   

18.
The potential to stimulate an indigenous microbial community to reduce a mixture of U(VI) and Tc(VII) in the presence of high (120 mM) initial NO3- co-contamination was evaluated in a shallow unconfined aquifer using a series of single-well, push-pull tests. In the absence of added electron donor, NO3-, Tc(VII), and U(VI) reduction was not detectable. However, in the presence of added ethanol, glucose, or acetate to serve as electron donor, rapid NO3- utilization was observed. The accumulation of NO2-, the absence of detectable NH4+ accumulation, and the production of N2O during in situ acetylene-block experiments suggest that NO3- was being consumed via denitrification. Tc(VII) reduction occurred concurrently with NO3- reduction, but U(VI) reduction was not observed until two or more donor additions resulted in iron-reducing conditions, as detected by the production of Fe(II). Reoxidation/remobilization of U(IV) was also observed in tests conducted with high (approximately 120 mM) but not low (approximately 1 mM) initial NO3- concentrations and not during acetylene-block experiments conducted with high initial NO3-. These results suggest that NO3(-)-dependent microbial U(IV) oxidation may inhibit or reverse U(VI) reduction and decrease the stability of U(IV) in this environment. Changes in viable biomass, community composition, metabolic status, and respiratory state of organisms harvested from down-well microbial samplers deployed during these tests were consistent with the conclusions that electron donor additions resulted in microbial growth, the creation of anaerobic conditions, and an increase in activity of metal-reducing organisms (e.g., Geobacter). The results demonstrate that it is possible to stimulate the simultaneous bioreduction of U(VI) and Tc(VII) mixtures commonly found with NO3- co-contamination at radioactive waste sites.  相似文献   

19.
Hexavalent uranium (U(VI)) can be reduced enzymatically by various microbes and abiotically by Fe(2+)-bearing minerals, including magnetite, of interest because of its formation from Fe(3+) (oxy)hydroxides via dissimilatory iron reduction. Magnetite is also a corrosion product of iron metal in suboxic and anoxic conditions and is likely to form during corrosion of steel waste containers holding uranium-containing spent nuclear fuel. Previous work indicated discrepancies in the extent of U(VI) reduction by magnetite. Here, we demonstrate that the stoichiometry (the bulk Fe(2+)/Fe(3+) ratio, x) of magnetite can, in part, explain the observed discrepancies. In our studies, magnetite stoichiometry significantly influenced the extent of U(VI) reduction by magnetite. Stoichiometric and partially oxidized magnetites with x ≥ 0.38 reduced U(VI) to U(IV) in UO(2) (uraninite) nanoparticles, whereas with more oxidized magnetites (x < 0.38) and maghemite (x = 0), sorbed U(VI) was the dominant phase observed. Furthermore, as with our chemically synthesized magnetites (x ≥ 0.38), nanoparticulate UO(2) was formed from reduction of U(VI) in a heat-killed suspension of biogenic magnetite (x = 0.43). X-ray absorption and M?ssbauer spectroscopy results indicate that reduction of U(VI) to U(IV) is coupled to oxidation of Fe(2+) in magnetite. The addition of aqueous Fe(2+) to suspensions of oxidized magnetite resulted in reduction of U(VI) to UO(2), consistent with our previous finding that Fe(2+) taken up from solution increased the magnetite stoichiometry. Our results suggest that magnetite stoichiometry and the ability of aqueous Fe(2+) to recharge magnetite are important factors in reduction of U(VI) in the subsurface.  相似文献   

20.
The mechanisms of photodegradation of binary iron- and uranium-citrate and ternary iron-uranium-citrate complexes were elucidated. Citric acid degradation products were identified by HPLC and GC, and the metal precipitates were identified by XRD and EXAFS. Photodegradation of a binuclear iron-citrate complex occurred as a result of two one-electron oxidations of citric acid with the formation of 3-oxoglutarate and two ferrous ions. The ferrous ions were reoxidized by a photo-Fenton reaction, resulting in the precipitation of iron as two-line ferrihydrite Fe(OH)3. The citric acid in the uranium-citrate complex underwent a two-electron oxidation to acetoacetate with the concomitant reduction of U(VI) to U(IV). The U(IV) was subsequently photooxidized in the presence of dioxygen with precipitation of uranium as the mineral schoepite (UO3 x 2H2O). A two-step electron reduction of two ferric ions to two ferrous ions wasthe primary mechanism for photodegradation of the ternary iron-uranium-citrate complex with oxidation of citric acid to 3-oxoglutarate; reduction of uranium was not observed. The iron precipitated as ferrihydrite and the uranyl ion as a uranyl hydroxide species. These results show the potential application of photochemical treatment of wastewater and decontamination solutions containing binary and ternary iron- and uranium-citrate complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号