首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
R-Fe-B系化合物:Nd-Fe-B系磁体目前已大量用于音圈马达、步进马达等。为了不断提高性能,现已开发了各种生产工艺。(1)粉末烧结法:Nd-Fe-B烧结磁体,为提高性能正致力于增加Nd2Fe14B主相并通过控制富硼相和富钕相来实现高性能化,在烧结过程中产生的波相量起着很重要的作用。(2)快淬薄带法:此法生产的Nd-Fe-B粉末广泛用于制造各向同性粘结磁体,为提高性能,通过添加锆、钒、铝、硅等元素制取粒径数十nm的微晶,可得到(BH)max>160kJ/m’的薄带磁体。例如(Nd。。Pr。。)sEe,‘CosB,。V;。快淬薄带(晶粒平…  相似文献   

2.
采用熔体快淬及晶化退火工艺制备了纳米双相(Nd,Pr)2Fe14B/α-Fe型磁体,研究了Nb和Zr的添加对磁体磁性能、微观结构和晶化行为的影响。结果表明:添加Nb和Zr可提高α—Fe相的晶化温度,抑制α—Fe的析出和长大,避免亚稳相的形成,从而提高硬磁相的体积百分比。Nb和Zr复合添加能细化晶粒,增强硬磁相和软磁相问的交换耦合作用,显著提高纳米晶双相永磁合金的磁性能。合金(Nd,Pr)2Fe14B/α-Fe经过最佳热处理后,磁性能达到Br=1.10T,iHc=534.2kA/m,(BH)max=143.6kJ/m^3。  相似文献   

3.
以Nd2Fe14B为基础的稀土永磁体具有大磁化强度、高居里温度和高磁各向异性.尽管进行了大量研究,但没有找到磁性超过Nd2Fe14B的新型永磁材料.目前,大量的注意力集中在有可能超过Nd2Fe14B烧结磁体的交换耦合纳米晶复合磁体,这种磁体是由纳米尺度的软磁和硬磁化合物晶粒组成的.在Nd-Fe-B系统中,t-Fop、Fop和肝Fe为软磁相,Nd2Fe14B为硬磁相.纳米品复合磁体具有由软磁相造成的大过饱和磁化强度和硬磁相产生的高桥涵磁力,因此,这种材料的进性依赖于复合相的种类和技量.同时,深加少量的元素(AISt,y,CrGa,An,蛇等)…  相似文献   

4.
放电等离子烧结-热变形技术制备NdFeB永磁材料   总被引:1,自引:1,他引:0  
采用放电等离子烧结(SPS)方法烧结HDDRNdFeB粉末,研究烧结温度对制备NdFeB永磁材料密度和磁性能的影响。随着烧结温度在650~900℃范围内升高,剩磁、内禀矫顽力及最大磁能积均呈现先升后降的趋势。800℃烧结所获得磁体的磁性能最佳:Br=0.78T,Hcj=577kA/m,(BH)max=78kJ/m3,其致密度达到了99%。微观组织、XRD图谱及磁性能均表明800℃烧结的磁体出现了一定程度的各向异性。900℃烧结时,晶粒长大明显。进而选择具有最佳磁性能的磁体在800℃进行热变形(HD)处理,制备出各向异性磁体。热变形制备的磁体中,大部分晶粒为扁平片状且c轴取向与热压方向一致;少量异常长大晶粒会使细小Nd2Fe14B晶粒的c轴偏离压力方向。各向异性磁体沿c轴的磁性能为:Br=1.09T,Hcj=384kA/m,(BH)max=114kJ/m3。  相似文献   

5.
为改善纳米晶交换耦合Nd2Fe14B/α-Fe永磁合金微结构以提高磁性能,用熔体快淬和动态晶化热处理的方法制备了纳米晶交换耦合Nd2Fe14B/α-Fe永磁体,采用XRD和TEM等方法系统研究了动态晶化热处理对Nd10.5(FeCoZr)83.4B6.1永磁体磁性能和显微组织的影响。结果表明:与传统晶化相比,动态晶化可以在相同的晶化温度下缩短晶化时间,同时能细化晶粒,增强晶粒间磁交换耦合作用,提高磁性能。Nd10.5(FeCoZr)83.4B6.1合金快淬薄带经700℃,10min动态晶化热处理后,制得的粘结磁体获得最佳磁性能,剩磁Br=0.685T,内禀矫顽力Hcj=732kA/m,磁感矫顽力Hcb=429kA/m,最大磁能积(BH)m=75kJ/m^3。  相似文献   

6.
热处理对Nd2Fe14B/α-Fe纳米复相磁体性能的影响   总被引:1,自引:0,他引:1  
为改善纳米复合永磁合金的磁性能,用熔体快淬和晶化热处理的方法制备了纳米复相Nd2Fe14B/α-Fe永磁体,研究了热处理工艺对Nd8Fe77B6Co8Nb1纳米晶复合磁体磁性能的影响.结果表明,热处理温度和时间明显影响纳米晶的形成及其磁性能.该纳米复合磁体在700℃×7min进行热处理时,可获得较好的磁性能,其矫顽力Hci=692kA/m,剩余磁感应强度Br=0.50T,最大磁能积(BH)max=51kJ/m3.  相似文献   

7.
纳米双相Nd2Fe14B/α-Fe磁体的微结构和交换耦合作用   总被引:2,自引:1,他引:2  
用熔体快淬法制备了高性能纳米双相耦合Nd2 Fe14 B/α Fe磁体 ,研究了快淬速率对其微结构和交换耦合作用的影响。实验结果表明 ,控制快淬速率在 12m/s时 ,可直接得到显微组织均匀 ,α Fe相粒子细小且均匀分布的纳米双相耦合Nd2 Fe14 B/α Fe磁体。低温退火消除由快速凝固带来的成分不均匀性后 ,强烈的铁磁交换耦合作用导致其最高磁性能为 :iHc=432 .2kA/m ,Jr=1.0 8T ,(BH) max=115kJ/m3 。快淬速率提高 ,非晶相体积分数增加 ,在高温晶化热处理时软硬磁相析出不均匀 ,个别α Fe相粒子奇异长大 ,尺寸达到 10 0nm左右 ,这不利于软硬磁相间的交换耦合作用 ,有损磁性能。  相似文献   

8.
应用开发     
稀 土 磁 体 的 应 用随着稀土磁体制造方法的改进和性能的不断提高,其应用领域急剧扩大,其市场也在不断扩展。永久磁体的特性用最大磁能积(BH)max表示,(BH)max越大,得到磁通密度的磁体体积越小。相同磁通所需磁体体积为天然磁体>锶铁氧体(SrFe12O19)>钕铁硼(Nd2Fe14B)。20世纪磁体最大磁能积直到60年代后半期出现了SmCo5之后才得到大幅度提高,后来人们又开发了Sm2(Co、Fe、Cu、Zr)17磁体及Nd2Fe14B磁体,继而使磁能积又迅速提高。20世纪初的马蹄形磁体的磁能积为10kJ/m3,现在已达400kJ/m3,但用途各异。目前三种稀土磁体与…  相似文献   

9.
郭朝晖  李卫 《金属学报》2002,38(8):866-870
用粉末冶金艺术制备了Sm(CobalFexCu0.088Zr0.25)7.5(x=0-0.30)烧结磁体,对Fe含量x对磁体的磁性及其高温特性的影响进行了系统研究,随Fe含量的增加,最大磁取积(BH)max和剩磁Br逐渐增加,分别在 x为0.21和0.27时达到了最大值205kJ/m^3和1.055T,然后迅速下降,当x≥0.24时,磁体中开始有FeCo软磁性相析出,破坏了磁体的永磁特性。Fe含量对磁体高温稳定性有巨大的影响,在Fe含量x=0.21时,磁体内禀矫顽力温度系数β为-0.235K,当x=0.07时,β降至-0.14%K(293-723K),制备出有很好的高温稳定性的永磁材料Sm(CbalFe0.07Cu0.088Zr0.025)7.5,在723K时其磁性能力:Br=0.725T,bHc=517kA/m,Hc=764kA/m,(BH)max=95kJ/m^3,B-H退磁曲线保持为直线。  相似文献   

10.
用双合金工艺在(Nd0.75Dy0.10Tb0.15)12.69Fe79.01Co2.00Nb0.30B6.00近正分主合金粉中掭加质量分数为3%的富稀土辅合金(Nd0.75Dy0.10Tb0.15)25.00Fe21.50Co<21.50>Nb4.00Ga8.00Ti5.00Al8.00B7.00粉和3%的Dy2O3粉,成功制备出超高矫顽力和高热稳定性的烧结Nd-Fe-B磁体,内禀矫顽力Hci和最大磁能积(BH)max分别为3028 kA/m和254 kJ/m3,22-220℃剩磁和矫顽力的温度系数分别为-0.104%/℃和-0.356%/℃,260℃不可逆磁通损失Lhirr的绝对值仅为4%.微观组织分析表明:主相Nd2Fe14B晶粒边界光滑、平直,富Nd相连续均匀分布于主相晶粒周围;在Nd2Fe14B晶粒表层附近富含Dy,Dy2O3中的Dy通过扩散与富Nd相及Nd2Fe14B晶粒表层中的Nd发生置换,从而在界面附近增强了磁各向异性.在此基础上,进一步提出了制备高矫顽力烧结Nd-Fe-B磁体中Dy的理想分布示意图.  相似文献   

11.
用双合金工艺在 (Nd0.75Dy0.10Tb0.15)12.69Fe79.01Co2.00Nb0.30B6.00 近正分主合金粉中添加质量分数为3%的富稀土辅合金 (Nd0.75Dy0.10Tb0.15)25.00Fe21.50Co21.50Nb4.00Ga8.00Ti5.00Al8.00B7.00粉 和3 %的Dy2O3粉, 成功制备出超高矫顽力和高热稳定性的烧结Nd-Fe-B磁体, 内禀矫顽力 Hci和最大磁能积(BH)max分别为3028 kA/m和 254 kJ/m3, 22-220 ℃剩磁和矫顽力的温度系数 分别为--0.104%℃和--0.356%℃, 260 ℃不可逆磁通损失L irr的绝对值仅为4%。微观组织分析表明: 主相Nd2Fe14B晶粒边界光滑、平直, 富Nd相连续均匀分布于主相晶粒周围; 在Nd2Fe14B晶粒 表层附近富含Dy, Dy2O3中的Dy通过扩散与富Nd相及Nd2Fe14B晶粒表层中的Nd发生置换, 从而在界面附近增强了磁各向异性. 在此基础上, 进一步提出了制备高矫顽力烧结Nd-Fe-B 磁体中Dy的理想分布示意图.  相似文献   

12.
采用电场烧结法制备出纳米复相Nd10.5Dy0.5Fe76.9Nb1Co586.1永磁块体,研究了电场烧结温度对其磁性能和抗压强度的影响,采用XRD,SEM等方法分别对其相结构、显微组织进行了分析。结果表明:非晶合金压制成型后,经823K,300S电场烧结制得的纳米晶永磁块体具有最佳磁性能:Br=0.6498T,Hcj=714kA/m,(BH)max=63kJ/m^3。随着烧结温度的升高,块体的抗压强度增加。  相似文献   

13.
采用粉末冶金法制备高温稀土永磁Sm(Co0.72Fe0.15Cu0.1Zr0.03)7.5,研究了烧结温度对磁体磁性能的影响。结果表明:烧结温度过低,则磁体的致密度较低,难以获得优良的磁性能;烧结温度过高,则Sm挥发,磁体的Sm含量降低,磁性能恶化。磁体的最佳烧结条件为:温度1215℃,保温45min。在上述条件制备的磁体在25℃及500℃时的剩磁夙、内禀矫顽力Hci、最大磁能积(BH)max分别为:0.94T,2276.6kA/m,171.9kJ/m^3及0.67T,509.4kA/m,81.2kJ/m^3;磁体的占.日退磁曲线在500℃时保持为直线,内禀矫顽力温度系数声(25℃-500℃)为-0,16%/℃,最高使用温度达到533℃。  相似文献   

14.
采用搅拌球磨法制备了纳米复相Nd2Fe14B/a—Fe永磁合金。借助X射线衍射(XRD)、差示扫描量热法(DSC)、透射电子显微镜(TEM)等分析方法研究了不同球磨时间及晶化处理温度对合金微观组织和磁性能的影响规律。结果表明:随球磨时间的延长,Nd2Fel4B相及a-Fe相的晶粒尺寸迅速减小,球磨5h后粉末由非晶相和晶粒尺寸约为10nm的a-Fe相组成,当晶化处理温度为650℃,保温时间为30min时,两相的晶粒尺寸比较细小,此时磁性能最好,达到Br=1.06T,Hci=347kA/m,(BH)m=142kJ/m^3。  相似文献   

15.
用熔体快淬法制备了高性能纳米双相耦合Nd2Fe14B/α-Fe磁体,研究了Cu/Ti复合添加对Nd2Fe14B/α-Fe纳米双相磁体磁性能和相分解的影响,实验结果表明,Cu和Ti复合添加可提高快淬带的晶化温度,并且改变α-Fe相析出方式,α-Fe直接从TbCu7结构的亚稳相分解中析出,而不是从非晶相中析出,这有利于形成α-Fe相晶粒细小且均匀分布的微结构,其最优磁性能为Hc=384kA/m(4.8kOe),σ=110Am^2/kg(110emu/g),(BH)max=120kJ/m^3(15MGOe)。  相似文献   

16.
磁粉与树脂结合制成的各种粘结磁体种类繁多,其应用之广不胜枚举,其工业产量逐年增长,日本在近年来的粘结磁体总产量已占永磁体总产量的23%左右.稀土系粘结磁体在日本的开发经历,自从对年代以来先后开发了SmCo5(1-5)系、Sm2TM17(2—17)系(TM代表CO等过渡金属)、Nd-Fe-B系等,自从1988年以来各向同性Nd系粘结磁体产量的增长速度十分惊人.粘结磁体的磁特性较之用同样磁粉制成的烧结磁体低得多,主要是因为有非磁性树脂粘结剂存在的结果。从数值上表示,以同种磁粉的烧结磁体的(BH)。作为lbo%,压缩成形磁体为切%,…  相似文献   

17.
研究了NdFeB粉末中添加1wt%Dy2O3粉末对烧结NdFeB磁体微观结构的影响,研究发现,在烧结过程中,Dy2O3中的Dy与Nd2Fe14B中的Nd发生了置换反应,Dy进入Nd2Fe14B相,形成了(Nd,Dy)2Fe14B相,提高了磁体的矫顽力。  相似文献   

18.
采用单辊急冷法熔融NdFeB烧结磁体(工业产品)制取快淬永磁合金.合金薄带具有很高的矫顽力,剩磁比达到0.5以上.合金带经过适当的热处理,可消除制备冷速过高时退磁曲线及磁性能的缺陷.随着烧结磁体磁性能等级提高,其快淬合金的剩磁和最大磁能积均提高,内禀矫顽力下降.由N50烧结磁体制备的快淬合金的较佳性能为:Br=0.84T、Hci=959kA/m、(BH)max=112 kJ/m3.X射线衍射分析表明快淬合金以Nd2Fe14B相晶粒为主,只有少量杂相.  相似文献   

19.
通过对合金组织和磁性的研究开发高矫顽力纳米复合磁体 R Coehoorn等发现在Fe3B/Nd2Fe14B系纳米复合磁体中,当Nd的浓度超过5%(原子)时,由于Nd2Fe2383优先生成,故得不到Nd2Fe14B,所以也得不到高的磁性能。日本广沢哲通过添加Cr发现可促成Nd2Fe14B相的生成Nd浓度可扩大到5.5%(原子),从而成功的实现了高矫顽力化,但是Cr置换Fe使Tc,  相似文献   

20.
作为提高Nd-Fe-B系烧结磁体磁特性的手段有(l)提高生相的饱和磁化强度,(2)增加磁体中的主相体积分量,*提高取向度,(4)提高磁体密度,(5)控制晶粒度等方法.一般稀土磁体的稀土元素是很活性的,容易形成稀土氧化物而以非磁性夹杂物形式存在,为了增加生相体积分量就必须减少这种非磁性夹杂物.因此,为开发高性能Nd系磁体,确立低氧化生产技术十分关键.日本日立金属公司提出的湿式成形技术--HILOP法(即日立低氧法),是大量生产低氧高性能Nd-Fe-B系烧结磁体的有效方法。HILOP法是将Nd-Fe-B粗粉原料装火喷射式超…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号