共查询到16条相似文献,搜索用时 78 毫秒
1.
2.
3.
4.
基于密度的聚类算法作为数据挖掘方法中的一种主要方法,不仅可以从数据集中发现任意形状的簇,而且可以观察到一个并发的、完整的聚类结构,以及具有对噪声数据不敏感的特点。针对目前常用的几种基于密度的聚类算法及改进算法进行讨论,分析了这些密度聚类算法各自的优缺点,并且以地理信息系统为应用研究背景,提出了基于密度的聚类算法与GIS相结合,通过对多维数据属性特征的提取,扩展到多维数据的处理,在三维空间地形数据中的分析中取得了高效的聚类结果。 相似文献
5.
基于密度的空间聚类算法研究 总被引:3,自引:1,他引:3
基于密度的聚类算法作为数据挖掘方法中的一种主要方法,不仅可以从数据集中发现任意形状的簇,而且可以观察到一个并发的、完整的聚类结构,以及具有对噪声数据不敏感的特点.针对目前常用的几种基于密度的聚类算法及改进算法进行讨论,分析了这些密度聚类算法各自的优缺点,并且以地理信息系统为应用研究背景,提出了基于密度的聚类算法与GIS相结合,通过对多维数据属性特征的提取,扩展到多维数据的处理,在三维空间地形数据中的分析中取得了高效的聚类结果. 相似文献
6.
7.
针对分布式数据流中数据有交叠、不完整的情况和聚类需要较低通信代价的要求,提出了密度和模型聚类思想相结合的分布式数据流聚类算法DAM-Distream。该算法利用混合高斯模型描述数据流的分布概况,可以有效压缩数据量并能较好的反映分布数据流间的交叠性。由于获得模型参数的EM算法对初值敏感,应用Hoeffding界理论和基于密度的算法对数据流进行初聚类,得到比较准确的初始参数,最后采用合并近似模型策略获得全局模型。仿真实验结果表明,DAM-Distream能有效克服EM算法的缺点,获得的模型参数性能更优,在降低系统的通信代价的同时能提高分布式环境下数据流的聚类质量。 相似文献
8.
9.
一种基于局部密度的分布式聚类挖掘算法 总被引:3,自引:1,他引:3
分布式聚类挖掘技术是解决数据集分布环境下聚类挖掘问题的有效方法.针对数据水平分布情况,在已有分布式密度聚类算法DBDC(density based distributed clustering)的基础上,引入局部密度聚类和密度吸引子等概念,提出一种基于局部密度的分布式聚类算法——LDBDC(local density based distributed clustering).算法适用于含噪声数据和数据分布异常情况,对高雏数据有着良好的适应性.理论分析和实验结果表明,LDBDC算法在聚类质量和算法效率方面优于已有的DBDC算法和SDBDC(scalable dellsity-based distributed clustering)算法.算法是有效、可行的. 相似文献
10.
Weka4WS采用WSRF技术用于执行远程的数据挖掘和管理分布式计算,支持分布式数据挖掘任务。基于Weka4WS和网格环境,尝试了一种新的分布式聚类方法,并成功地将其嵌入到Weka4WS框架中,借助Weka Library实现分布式数据挖掘算法,同时引入了距离代价和混合概率的概念,将网格与Web服务技术融合,以分布式问题求解环境和开源数据挖掘类库Weka为底层支持环境,构建了网格环境下面向服务的分布式数据挖掘体系,并以基于Weka4WS的分布式聚类算法验证了算法的有效性和体系结构的可行性。 相似文献
11.
12.
聚类作为无监督学习技术,已在实际中得到了广泛的应用.但是对于带有噪声的数据集,一些主流算法仍然存在着噪声去除不彻底和聚类结果不准确等问题.本文提出了一种基于密度差分的自动聚类算法(CDD:Clustering based on Density Difference),实现了对含有噪声数据集的自动分类.所提算法根据噪声数据和有用数据密度的不同,实现去噪声和数据的分类,并通过构建数据间的邻域,进一步实现了对有用数据间不同类别的划分.通过实验验证了所提算法的有效性. 相似文献
13.
密度峰值聚类算法综述 总被引:1,自引:0,他引:1
密度峰值聚类(density peak, DPeak)算法是一种简单有效的聚类算法,它可将任意维度数据映射成2维,在降维后的空间中建构出数据之间的层次关系,可以非常容易地从中挑选出密度高、且与其他密度更高区域相隔较远的数据点.这些点被称为密度峰值点,可以用来作为聚类中心.根据建构好的层次关系,该算法提供了2种不同的方式完成最后聚类:一种是与用户交互的决策图,另一种是自动化方式.跟踪了DPeak近年来的发展与应用动态,对该算法的各种改进或变种从以下3方面进行了总结和梳理:首先,介绍了DPeak算法原理,对其在聚类算法分类体系中的位置进行了讨论.将其与5个主要的聚类算法做了比较之后,发现DPeak与均值漂移聚类算法(mean shift)有诸多相似之处,因而认为其可能为mean shift的一个特殊变种.其次,讨论了DPeak的几个不足之处,如复杂度较高、自适应性不足、精度低和高维数据适用性差等,将针对这些缺点进行改进的相关算法做了分类讨论.此外,梳理了DPeak算法在不同领域中的应用,如自然语言处理、生物医学应用、光学应用等.最后,探讨了密度峰值聚类算法所存在的问题及挑战,同时对进一步的工作进行展望. 相似文献
14.
传统的基于网格的数据流聚类算法在同一粒度的网格上进行聚类,虽然提高了处理速度,但聚类准确性较低。针对此问题,提出一种新的基于双层网格和密度的数据流聚类算法DBG Stream。在2种粒度的网格上对数据流进行聚类,并借鉴CluStream算法的思想,将聚类过程分为2个阶段。在线过程中利用粗粒度的网格单元形成初始聚类,离线过程中在细粒度网格单元上,对位于簇边界的网格单元进行二次聚类以提高聚类精度,并实现了关键参数的自动设置,通过删格策略提高算法效率。实验结果表明,DBG Stream算法的聚类精确度较D Stream算法有较大提高,有效解决了传统基于网格聚类算法的聚类精度较低的问题。 相似文献
15.
移动对象的聚类算法,要求能够适应移动对象移动模式动态变化的特点.针对该问题,提出了一种基于空间相依性的移动对象聚类算法.该算法首先计算移动对象之间的空间相依度,空间相依度考虑了移动对象之间的移动速度、方向及位置.当用户之间的空间相依度大于某一阈值时,认为对象之间可达,所有相依度可达对象划分为同一个群组,从而实现移动对象聚类.算法采用一段时间内对象的平均速度和方向代替即时速度和方向,能够有效降低重新聚类次数.实验及分析表明,该算法能够体现移动对象的移动特性,对于移动对象的聚类具有较高性能. 相似文献
16.
数据的规模越来越大,要求数据挖掘算法有很高的执行效率.基于密度的聚类是聚类分析中的一种,其主要优点是发现任意形状的聚类和对噪音数据不敏感.提出了一种新的基于参考点和密度的CURD(clustering using references and density)聚类算法,其创新点在于,通过参考点来准确地反映数据的空间几何特征,然后基于参考点对数据进行分析处理.CURD算法保持了基于密度的聚类算法的上述优点,而且CURD算法具有近似线性的时间复杂性,因此CURD算法适合对大规模数据的挖掘.理论分析和实验结果也证明了CURD算法具有处理任意形状的聚类、对噪音数据不敏感的特点,并且其执行效率明显高于传统的基于R*-树的DBSCAN算法. 相似文献