首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have studied TGF-beta mediated G1 arrest in WM35, an early stage human melanoma cell line. These cells have lost p15INK4B expression through loss of one chromosome 9 and rearrangement of the other. In asynchronously growing WM35, TGF-beta caused reductions in cyclin D1, cyclin A and cdk4 proteins and their associated kinase activities and an increase in both p21Cip1/WAF1 and p27Kip1. These findings were confirmed in cells released from quiescence in the presence of TGF-beta, in which TGF-beta inhibited or delayed the reduction in the cdk inhibitors that normally occurs in late G1. In contrast to observations in other cell types, there was an increased association of both p21Cip1/WAF1 and p27Kip1 with cyclin D1/cdk4 and with cyclin E/cdk2 during TGF-beta mediated arrest of asynchronously growing cells. Upregulation of p21Cip1/WAF1 preceded that of p27Kip1. Furthermore, p21Cip1/WAF1 and p27Kip1 were not present in the same cdk complexes but bound distinct populations of target cdk molecules. Both p21Cip1/WAF1 and p27Kip1 immunoprecipitates from asynchronously growing cells contained active kinase complexes. These KIP-associated kinase activities were reduced in TGF-beta arrested cells. It has been proposed that in TGF-beta arrested epithelial cells, up-regulation of p15INK4B and of p15INK4B binding to cdk4 serves to destabilize the association of p27Kip1 with cyclin D1/cdk4, promoting p27Kip1 binding and inhibition of cyclin E/cdk2. Our findings demonstrate that this is not a universal mechanism of G1 arrest by TGF-beta. In TGF-beta arrested WM35, which lack p15INK4B, the increased p21Cip1/WAF1 may serve a similar function to that of p15INK4B: initiating kinase inhibition and providing an additional mechanism to supplement the effect of p27Kip1 on G1 cyclin/cdks.  相似文献   

2.
BACKGROUND: Intestinal mucosal turnover is a process of proliferation, differentiation, and apoptosis; the mechanisms remain largely undefined. The purpose of our study was to (1) assess the relationship between apoptosis and enterocyte differentiation and (2) determine whether the cell-cycle inhibitors, p21Waf1/Cip1 and p27Kip1, or the apoptosis inhibitors, Bcl-2 and Bcl-XL, may be involved. METHODS: Gut-derived Caco-2 cells were treated with sodium butyrate. Apoptosis was assessed by Hoechst stain, DNA laddering, and annexin V assay; differentiation was determined by alkaline phosphatase and sucrase activity. RNA and protein were analyzed for expression of p21Waf1/Cip1, p27Kip1, and members of the Bcl-2 family. RESULTS: Treatment of Caco-2 cells with sodium butyrate resulted in the concomitant induction of both differentiation (increased alkaline phosphatase and sucrase activity) and apoptosis. Increased levels of p21Waf1/Cip1 and p27Kip1 mRNA and protein were detected at 24 hours, occurring before apoptosis or differentiation; decreased mRNA levels of Bcl-2 and Bcl-XL were noted at 24 hours. CONCLUSIONS: Differentiation and apoptosis occurred simultaneously in Caco-2 cells, suggesting that apoptosis may be linked to enterocyte differentiation. The induction of p21Waf1/Cip1 and p27Kip1 and the down-regulation of Bcl-2 and Bcl-XL further suggest a link between the cell-cycle mechanisms regulating enterocyte differentiation and apoptosis.  相似文献   

3.
Loss of attachment to an extracellular matrix substrate arrests the growth of untransformed cells in the G1 phase. This anchorage-dependent cell cycle arrest is linked to increased expression of the p21Cip1 (p21) and p27Kip1 (p27) cyclin-dependent kinase inhibitors. The result is a loss of cdk2-associated kinase activity, especially that of cyclin E-cdk2. The levels of p21 and p27 are also upregulated in unattached transformed cells, but cyclin E-cdk2 activity remains high, and the cells are able to grow in an anchorage-independent manner. Increased expression of cyclin E and cdk2 appears to be partially responsible for the maintenance of cyclin E-cdk2 activity in transformed cells. To explore further the regulation of cyclin E-cdk2 in transformed cells, we have analysed the subcellular distribution of cyclin-cdk complexes and their inhibitors in normal human fibroblasts, their transformed counterparts, and in various human tumor cell lines. In substrate-attached normal fibroblasts, cyclin E and cdk2 were exclusively in the nuclear fraction, associated with one another. When normal fibroblasts were detached and held in suspension, cyclin E-cdk2 complexes remained nuclear, but were now found associated with the p21 and p27 cdk inhibitors and lacked histone H1 phosphorylating activity. In contrast, the transformed fibroblasts and tumor cells, which are anchorage-independent, had more than half of their cyclin E, cdk2, p21 and p27 in the cytoplasmic fraction, both in attached and suspended cultures. The cytoplasmic p21 and p27 were bound to cyclin E-cdk2, as well as to complexes containing cyclin A and cyclin D. The nuclear cyclin E-cdk2 complexes from the transformed cells grown in suspension contained only low levels of p21 and p27 and had histone H1 kinase activity. Thus, at least three mechanisms contribute to keeping cyclin E-cdk2 complexes active in suspended anchorage-independent cells: cyclin E and cdk2 are upregulated, as reported previously, cdk inhibitors are sequestered away from the nucleus by cytoplasmic cyclin-cdk complexes, and the binding of the inhibitors to nuclear cyclin E-cdk2 complexes is impaired.  相似文献   

4.
DNA tumour viruses have evolved a number of mechanisms by which they deregulate normal cellular growth control. We have recently described the properties of a cyclin encoded by human herpesvirus 8 (also known as Kaposi's sarcoma-associated herpesvirus) which is able to resist the actions of p16(Ink4a), p21(Cip1) and p27(Kip1) cdk inhibitors. Here we investigate the mechanism involved in the subversion of a G1 blockade imposed by overexpression of p27(Kip1). We demonstrate that binding of K cyclin to cdk6 expands the substrate repertoire of this cdk to include a number of substrates phosphorylated by cyclin-cdk2 complexes but not cyclin D1-cdk6. Included amongst these substrates is p27(Kip1) which is phosphorylated on Thr187. Expression of K cyclin in mammalian cells leads to p27(Kip1) downregulation, this being consistent with previous studies indicating that phosphorylation of p27(Kip1) on Thr187 triggers its downregulation. K cyclin expression is not able to prevent a G1 arrest imposed by p27(Kip1) in which Thr187 is mutated to non-phosphorylatable Ala. These results imply that K cyclin is able to bypass a p27(Kip1)-imposed G1 arrest by facilitating phosphorylation and downregulation of p27(Kip1) to enable activation of endogenous cyclin-cdk2 complexes. The extension of the substrate repertoire of cdk6 by K cyclin is likely to contribute to the deregulation of cellular growth by this herpesvirus-encoded cyclin.  相似文献   

5.
Androgen induces prostate cell proliferation in the castrated rat. We hypothesized that G1 cyclins, cyclin-dependent kinases (cdk), and cdk inhibitors mediate this cellular response to mitogenic signals. In this study, induction of cyclins D1, D2, D3, E, and cdks 2, 4, and 6 expression was observed at various time points during testosterone replacement in the ventral prostate of castrated rats. The induction followed prostate epithelium proliferation, which peaked at 48 h and decreased at 120 h during the treatment. The study of cyclin/cdk complex formation revealed that more cyclin D1/cdk4 and cyclin D1/cdk6 complexes were formed at 48 h than at 120 h of treatment, but cyclin D1/cdk2 complexes remained the same. Furthermore, both hyperphosphorylated and hypophosphorylated forms of Rb were detected at 48 h, but only the hypophosphorylated form was detected at 120 h of treatment. p21Cip1, which was very abundant in the ventral prostate of castrated and intact rats, was not detected when the prostate started proliferation and increased gradually as proliferation decreased during the androgen treatment. Meanwhile, p27Kip1 dramatically increased after androgen treatment, and the induction levels were less at the peak of prostate proliferation and higher when proliferation was low. The results presented here suggest that expression of G1 cyclins and their related kinases and kinase inhibitors are well regulated after androgen replacement in the ventral prostate of castrated rats. The cooperation between these cell cycle regulators leads to a well-controlled prostate regeneration.  相似文献   

6.
It has been proposed that the functions of the cyclin-dependent kinase inhibitors p21(Cip1/Waf1) and p27Kip1 are limited to cell cycle control at the G1/S-phase transition and in the maintenance of cellular quiescence. To test the validity of this hypothesis, p21 was expressed in a diverse panel of cell lines, thus isolating the effects of p21 activity from the pleiotropic effects of upstream signaling pathways that normally induce p21 expression. The data show that at physiological levels of accumulation, p21, in addition to its role in negatively regulating the G1/S transition, contributes to regulation of the G2/M transition. Both G1- and G2-arrested cells were observed in all cell types, with different preponderances. Preponderant G1 arrest in response to p21 expression correlated with the presence of functional pRb. G2 arrest was more prominent in pRb-negative cells. The arrest distribution did not correlate with the p53 status, and proliferating-cell nuclear antigen (PCNA) binding activity of p21 did not appear to be involved, since p27, which lacks a PCNA binding domain, produced similar arrest distributions [corrected], DNA endoreduplication occurred in pRb-negative but not in pRb-positive cells, suggesting that functional pRb is necessary to prevent DNA replication in p21 G2-arrested cells. These results suggest that the primary target of the Cip/Kip family of inhibitors leading to efficient G1 arrest as well as to blockade of DNA replication from either G1 or G2 phase is the pRb regulatory system. Finally, the tendency of Rb-negative cells to undergo endoreduplication cycles when p21 is expressed may have negative implications in the therapy of Rb-negative cancers with genotoxic agents that activate the p53/p21 pathway.  相似文献   

7.
Neurodegeneration and cell death in Alzheimer's disease might be associated with aberrant proliferative mechanisms and activation of cell-cycle related events. We reported previously on the elevated expression of the cyclin dependent kinase inhibitor p16INK4a in Alzheimer's disease closely associated with neurofibrillary degeneration. In the present study, we demonstrate that other members of the INK4-family of cyclin dependent kinase inhibitors such as p15INK4b, p18INK4c and p19INK4d that bind directly to cdk4/6 or to complexes of cdk4/6 with D-type cyclins are all elevated. In contrast, no indication of altered expression of the cyclin dependent kinase inhibitors p21Cip1 and p27Kip1 were observed. Inhibitors of the INK4-family were strongly expressed in tangle-bearing neurones and neuritic components of plaques. A much lower expression was also seen in astrocytes. These findings add further evidence to the suggestion that a dysfunction of cell cycle regulation is of critical importance in the pathomechanism of Alzheimer's disease.  相似文献   

8.
Mesangial cell proliferation is a key feature of glomerulonephritis. The hydroxymethylglutaryl-coenzyme A reductase inhibitor lovastatin is known to inhibit cell cycle progression. To determine the inhibitory mechanisms of mesangial cell proliferation by lovastatin, the cyclin-dependent kinase (CDK) activity, and expression of CDK inhibitor (p27Kip1, p21Cip1, and p16INK4) mRNA and protein were measured. Lovastatin inhibited phosphorylation of retinoblastoma protein and mesangial cell proliferation dose dependently. Lovastatin increased the p27Kip1 protein level but produced no changes in the abundance of the p27Kip1 mRNA level both in the presence and absence of mitogens. Treatment with lovastatin revealed the increment of both CDK2- and CDK4-bound-p27Kip1. The experiment using antisense oligonucleotide against p27Kip1 showed significant amelioration of lovastatin-induced cell cycle arrest. Lovastatin reduced both platelet-derived growth factor-stimulated CDK2 and CDK4 kinase activities. In conclusion, lovastatin inhibited mesangial proliferation via translational upregulation or impairment of p27Kip1 protein degradation. Lovastatin serves as a potential therapeutic approach to mesangial proliferative disease.  相似文献   

9.
Recent studies have shown that the cyclin-dependent kinase (cdk) inhibitors play important roles in cell cycle progression in normal cells. Alterations in the cdk inhibitors also appear to be important in cancer development in a number of human tumors. p27Kip1 is a member of the CIP/KIP family of cdk inhibitors that negatively regulates cyclin-cdk complexes. Reduced levels of p27Kip1 protein have been identified in a number of human cancers, and in some cases reduced p27Kip1 is associated with an increase in proliferative fraction. In the present study, we examined p27Kip1 protein by immunohistochemistry in 10 normal and 36 dysplastic epithelia and in 8 squamous cell carcinomas from one anatomical site within the oral cavity, the floor of the mouth. Proliferative activity was assessed in serial sections by determining the expression of the cell cycle proteins Ki-67 and cyclin A. p27kip1 protein was significantly reduced in oral dysplasias and carcinomas compared with that in normal epithelial controls. In addition, there was a significant reduction in p27Kip1 protein between low- and high-grade dysplasias, suggesting that changes in p27Kip1 expression may be an early event in oral carcinogenesis. There was increasing expression of Ki-67 and cyclin A proteins with increasingly severe grades of dysplasia compared with normal controls. Although there was a strong correlation between Ki-67 and cyclin A scores (r2= 0.61) for all categories of disease, there was a weak negative correlation between Ki-67 and p27Kip1 levels (r2 = 0.29) and between cyclin A and p27Kip1 levels (r2 = 0.25). In conclusion, this study has found that a reduction in the proportion of cells expressing p27Kip1 protein is frequently associated with oral dysplasia and carcinoma from the floor of the mouth. Furthermore, reductions in p27Kip1 levels are associated with increased cell proliferation, although other changes likely contribute to altered cell kinetics during carcinogenesis at this site.  相似文献   

10.
11.
TGF-beta1 inhibits the cell cycle progression of many types of cells by arresting them in the G1 phase. This cell cycle arrest has been attributed to the regulatory effects of TGF-beta1 on both the levels and the activities of the G1 cyclins and their kinase partners. The activities of these kinases are negatively regulated by a number of proteins, such as p15INK4b, p21WAF1/Cip1, and p27Kip1, that physically associate with cyclins, cyclin-dependent kinases (Cdk), or cyclin-Cdk complexes. In epithelial cell lines, TGF-beta1 was previously shown to inhibit cell cycle progression through down-regulation of Cdk4 and/or up-regulation of p15INK4b and/or p21WAF1/Cip1. However, TGF-beta1 had little or no effect on the p27Kip1 mRNA and protein levels. In this report, we show that, in contrast to observations in epithelial cell lines, TGF-beta1 increased the p27Kip1 mRNA and protein levels in the murine B cell lines CH31 and WEHI231. This TGF-beta1-mediated induction of p27Kip1 also resulted in an increased association of p27Kip1 with Cdk2 and a decreased Cdk2 kinase activity. In contrast to epithelial cells, however, TGF-beta1 had little or no effect on the Cdk4 and p21WAF1/Cip1 protein levels in these B cells. Finally, although several studies suggested a direct role of p53 in TGF-beta1-mediated cell cycle arrest in epithelial cells, TGF-beta1 inhibited cell cycle progression in CH31 even in the absence of wild-type p53. Taken together, these results suggest that TGF-beta1 induces G1 arrest in B cells primarily through a p53-independent up-regulation of p27Kip1 protein.  相似文献   

12.
Retinoic acid (RA) treatment of SMS-KCNR neuroblastoma (NB) cells leads to G1 growth arrest and neuronal differentiation. To investigate the molecular mechanisms by which RA alters cell growth, we analysed the expression and activity of components of the cell cycle machinery after culture in RA. Within 2 days of RA treatment and prior to the arrest of NB cells in the G1 phase of the cell cycle, there is a complete downregulation of G1 cyclin/Cdk activities. Protein levels for the G1 cyclin/Cdks were essentially unchanged during this time although there was a decrease in the steady-state levels of p67N-Myc and hyperphosphorylated Rb proteins. The Cdk inhibitors, p21Cip1 and p27Kip1 were constitutively expressed in KCNR while p15INK4B and p16INK4A were not detected. RA induced an increase in the expression of p27Kip1 but not p21Cip1. Furthermore, coincident with the decrease in kinase activity there was an increase in G1 cyclin/Cdk bound p27Kip1. These results indicate that changes in the level of p27Kip1 and its binding to G1 cyclin/Cdks may play a key role in RA induced growth arrest of NB cells.  相似文献   

13.
In the present study we analyzed, by immunohistochemistry, a panel of human melanomas for protein expression of the cyclin-dependent kinase (cdk) inhibitor p27Kip1 and evaluated whether deregulated expression correlates with clinical outcome for this type of cancer. We found that p27Kip1 was strongly expressed by normal melanocytes and benign nevi, whereas in malignant melanoma, a heterogeneous expression pattern was observed. In the case of nodular melanomas, the level of p27Kip1 was found to correlate significantly with the thickness of the tumor, with less protein expressed in thicker lesions. We also found that patients having tumors with fewer than 5% p27Kip1-staining cells had a significantly higher risk of early relapse of their disease compared with those expressing moderate or high levels. In contrast, the level of p27Kip1 did not correlate with tumor thickness or disease-free survival in patients with superficial spreading melanomas, suggesting that p27Kip1 may play different roles in these two major pathological subgroups of malignant melanoma. Furthermore, p27Kip1 did not appear to have an influence on overall survival for either subgroup. When we examined the combined effect of p21WAF1/CIP1 (another cdk inhibitor) and p27Kip1 on clinical outcome, we found that analysis of these two cdk inhibitors together may have greater prognostic potential than either alone. In conclusion, our results suggest that virtually complete loss of p27Kip1 protein expression has potential importance as a prognostic indicator of early relapse in patients with nodular melanoma The results, furthermore, underscore the value of analyzing multiple cell cycle regulatory proteins to obtain the most reliable indication of prognosis.  相似文献   

14.
15.
The proliferation and terminal differentiation of granulosa cells are critical for normal follicular growth, ovulation, and luteinization. Therefore, the in situ localization and hormonal regulation of cell cycle activators (cyclin D1, D2, and D3) and cell cycle inhibitors (p27Kip1 and p21Cip1) were analyzed in ovaries of mice and rats at defined stages of follicular growth and differentiation. Cyclin D2 mRNA was specifically localized to granulosa cells of growing follicles, while cyclin D1 and cyclin D3 were restricted to theca cells. In hypophysectomized (H) rats, cyclin D2 mRNA and protein were increased in granulosa cells by treatment with estradiol or FSH and were increased maximally by treatment with both hormones. In serum-free cultures of rat granulosa cells, cyclin D2 mRNA was rapidly elevated in response to FSH, forskolin, and estradiol, indicating that estradiol as well as cAMP can act directly and independently to increase cyclin D2 expression. The levels of p27Kip1 protein were not increased in response to estradiol or FSH. In contrast, when ovulatory doses of human CG (LH) were administered to hormonally primed H rats to stimulate luteinization, cyclin D2 mRNA and protein were rapidly decreased and undetectable within 4 h, specifically in granulosa cells of large follicles. Also in response to LH, the expression of the cell cycle inhibitor p27Kip1 was induced between 12 and 24 h (p21Cip1 was induced within 4 h) and remained elevated specifically in luteal tissue. A critical role for cyclin D2 in the hormone-dependent phase of follicular growth is illustrated by the ovarian follicles of cyclin D2-/- mice, which do not undergo rapid growth in response to hormones, but do express markers of FSH/LH action, cell cycle exit, and terminal differentiation. Collectively, these data indicate that FSH and estradiol regulate granulosa cell proliferation during the development of preovulatory follicles by increasing levels of cyclin D2 relative to p27Kip1 and that LH terminates follicular growth by down-regulating cyclin D2 concurrent with up-regulation of p27Kip1 and p21Cip1.  相似文献   

16.
IL-4 is a pleiotrophic cytokine that has been shown to affect cells of the central nervous system. We have demonstrated that IL-4 inhibits DNA synthesis and proliferation in human astroglia expressing IL-4 receptors. In this study, we sought to identify mechanisms that could account for the antimitogenic effects of IL-4. Epidermal growth factor (EGF)-stimulated human astroglia were arrested in G1 phase by IL-4, even though IL-4 stimulated levels of the G1 cyclins, D1 and E. Histone H1 kinase activity of cdk2 immunoprecipitates, however, was sharply reduced by IL-4; impairment of kinase activity was also evident in cyclin E immunoprecipitates, which contained evidence of hypophosphorylated (inactive) cdk2 product. Reduced cyclin E-associated cdk2 activity was not due to impaired cyclin-dependent kinase-activating kinase (CAK) activity, which was unaffected by IL-4. Inactive cyclin E/cdk2 complexes from IL-4 + EGF-treated cells contained, however, strikingly elevated p27Kip1 cdk inhibitor. Elevated p27 was also detectable in whole cell lysates after 24 and 48 h of IL-4 treatment; by 72 h, p27 was no longer elevated. Pretreatment with antisense but not mismatch p27 oligonucleotides attenuated the inhibitory effects of IL-4 on DNA synthesis and histone kinase activity of cyclin E/cdk2 complexes. Antisense p27 also abrogated IL-4-mediated elevation of p27 in whole cell lysates and cyclin E/cdk2 complexes. These findings demonstrate that IL-4 regulates the cell cycle machinery of astroglial cells via a p27Kip1 braking mechanism.  相似文献   

17.
Recent studies have shown that decreased expression of p27Kip1 is associated with high grade tumors and an unfavorable prognosis in several types of human cancer. To clarify the role of p27Kip1 in colon cancer, we have overexpressed this protein in the HT29 colon cancer cell line. The derivatives displayed an increase in the p27Kip1 protein in cyclin E/CDK2 immunoprecipitates and a decrease in cyclin E-associated kinase activity when compared to vector control clones, providing evidence that the overexpressed protein was functional. Clones with a high level of p27Kip1 displayed partial growth inhibition in monolayer culture and a decrease in plating efficiency, even though they expressed increased levels of the cyclin D1 protein. Using alkaline phosphatase expression as a marker, we found that the p27Kip1 overexpressor clones displayed a 2-3-fold increase in sensitivity to induction of differentiation by 2 mM sodium butyrate. In contrast to these results, derivatives of HT29 cells that stably overexpressed p21Cip1/Waf1 displayed decreased sensitivity to the induction of differentiation. These findings may explain why decreased levels of p27Kip1 in certain human cancers is associated with high grade (poorly differentiated) tumors, and suggest that strategies that increase the level of p27Kip1 may be useful in cancer therapy.  相似文献   

18.
The molecular mechanism of androgen-independent growth of prostate cancer after androgen ablation was explored in LNCaP cells. An androgen-dependent clonal subline of the LNCaP human prostate carcinoma cell line, LNCaP 104-S, progressed to a slow growing stage (104-R1) and then to a faster growing stage (104-R2) during more than 2 yr of continuous culture in the absence of androgen. Androgen-induced proliferation of 104-S cells is inhibited by the antiandrogen Casodex, while proliferation of 104-R1 and 104-R2 cells is unaffected by Casodex. This indicates that proliferation of 104-R1 and 104-R2 cells is not supported by low levels of androgen in the culture medium. Compared with LNCaP 104-S cells, both 104-R1 and 104-R2 cells express higher basal levels of androgen receptor (AR), and proliferation of these two cell lines is paradoxically repressed by androgen. After continuous passage in androgen-containing medium, 104-R1 cells reverted back to an androgen-dependent phenotype. The mechanism of androgenic repression of 104-R1 and 104-R2 sublines was further evaluated by examining the role of critical regulatory factors involved in the control of cell cycle progression. At concentrations that repressed growth, androgen transiently induced the expression of the cyclin-dependent kinase (cdk) inhibitor p21waf1/cip1 in 104-R1 cells, while expression of the cdk inhibitor p27Kip1 was persistently induced by androgen in both 104-R1 and 104-R2 cells. Induced expression of murine p27Kip1 in 104-R2 cells resulted in G1 arrest. Specific immunoprecipitates of Cdk2 but not Cdk4 from androgen-treated 104-R1 cells contained both p21waf1/cip1 and p27Kip1. This observation was confirmed by in vitro assay of histone H1 and Rb (retinoblastoma protein) phosphorylation by the proteins associated with the immune complex. Furthermore, inhibition of Cdk2 activity correlated with the accumulation of p27Kip1 and not p21waf1/cip1. From these results we conclude that androgenic repression of LNCaP 104-R1 and 104-R2 cell proliferation is due to the induction of p27Kip1, which in turn inhibits Cdk2, a factor critical for cell cycle progression and proliferation.  相似文献   

19.
20.
An immunosuppressant Rapamycin (Rap) has been reported to cause G1 arrest by inhibiting p70 S6 kinase and G1 cyclin/cdks kinase activities when added to quiescent cells with mitogens. However, antiproliferative effects of Rap on exponentially growing cells have been poorly investigated. We examined the intracellular events after the treatment of Rap in exponentially growing T cells and found that Rap upregulated a cdks inhibitor, p27Kip1 at both mRNA and protein levels in Rap-sensitive cells. Antiproliferative effect of Rap was mainly ascribed to the inhibition of cyclin E/cdk2 kinase activity through the formation of cyclin E/cdk2-p27Kip1 complex rather than inhibition of p70 S6 kinase activity. Furthermore, we showed that Rap-sensitive cells with elevated p27Kip1 expression lost sensitivity to Rap when antisense p27Kip1 was introduced, which indicates that the basal level of p27Kip1 is one of the limiting factors that determine the sensitivity to Rap in already cycling cells. These data suggest the presence of a putative threshold level of p27Kip1 at late G1 phase in already cycling cells. Rap may cause G1 arrest by upregulating the amount of p27Kip1 beyond the threshold in some Rap-sensitive cells that are exponentially growing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号