首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this work, we report a functionally gradient piezoelectric ceramic actuator with sandwiched structure prepared by the powder metallurgical method. The functional gradients of piezoelectric activity and dielectric activity vary inversely across the thickness of the actuator. Such functional gradients are obtained by interdiffusion reaction between a high piezoelectric composition [Pb(Zr,Ti)O3/PZT] and a high dielectric composition (PbNi1/3Nb2/3O3/PNN). The bending displacement at the free end of the PNN/PZT functionally graded piezoelectric ceramic actuator was approximately 20 m when 1.4-kV/mm electric field was applied. The grain morphology and compositional distribution across the actuator section and the microstructures of the sandwiched layer were investigated by scanned electron microscopy equipped with energy-dispersive spectroscopy, transmission electron microscopy, and selected area electron diffraction patterns, respectively.  相似文献   

2.
Piezoelectric transducers with high directional-dependent response are of interest in several applications because of their ability to sense and actuate along specific directions where they can distinguish individual principal strain components. This paper presents an improved unidirectional sensor obtained using a multi-laminate piezocomposite that maximizes the electromechanical coupling factor or the piezoelectric strain constant in one direction with respect to the other directions. Furthermore, multi-laminate structures provide significant design potential by the variation of the orientation and stacking sequence of fibers to obtain the desired properties. The effective properties depend on the number of layers, the fibers orientation as well as the thickness of each layer, and they are estimated by the variational asymptotic method for unit cell homogenization. A design that guarantees maximum directional dependence in terms of piezoelectric strain constant is determined by a global optimization technique using a genetic algorithm. Layered transducers composed of several orthotropic passive layers and a single active layer are considered.  相似文献   

3.
This paper deals with a deterministic and rational way to design piezoelectric transformers in radial mode. The proposed approach is based on the study of the inverse problem of design and on its reformulation as a mixed constrained global optimization problem. The methodology relies on the association of the analytical models for describing the corresponding optimization problem and on an exact global optimization software, named IBBA and developed by the second author to solve it. Numerical experiments are presented and compared in order to validate the proposed approach.  相似文献   

4.
An optimization of the excitation-measurement configuration is proposed for the characterization of damage in PZT-4 piezoelectric plates, from a numerical point of view. To perform such an optimization, a numerical method to determine the location and extent of defects in piezoelectric plates is developed by combining the solution of an identification inverse problem, using genetic algorithms and gradient-based methods to minimize a cost functional, and using an optimized finite element code and meshing algorithm. In addition, a semianalytical estimate of the probability of detection is developed and validated, which provides a flexible criterion to optimize the experimental design. The experimental setup is optimized upon several criteria: maximizing the probability of detection against noise effects, ensuring robust search algorithm convergence and increasing the sensitivity to the presence of the defect. The measurement of voltage ? is concluded to provide the highest identifiability, combined with an excitation of the specimen by a mechanical traction transverse to the polarization direction. Sufficient accuracy is predicted for the damage location and sizing under realistic noise levels.  相似文献   

5.
摘要:为实现对不同方向环境振动能量的收集,提出了一种新颖的多方向振动能量收集装置的设计结构,装置的换能部分采用了一种Rainbow型压电结构。为提高多方向振动能量收集装置收集能量的效果,以多方向振动能量收集装置输出的总电能为目标函数,综合考虑金属弹性基片的强度、装置振动的固有频率及装置的尺寸空间要求等多种因素,采用序列二次规划法对能量收集装置的结构参数进行了优化。该多方向振动能量收集装置经过优化后,在Y向激励时,其输出的总电能为37.146μJ,比优化前提高了30.82%,当沿装置体对角线方向激励时,结构装置输出的总电能为58.715μJ,比优化前提高了29.24%,装置的能量收集效果得到了明显提高。分析结果为多方向振动能量收集装置的设计、制造及应用提供了技术依据。  相似文献   

6.
We determine optimal electrode shape and size of lateral-field-excited (LFE) thickness-shear resonators. The determined electrodes are optimal in that they satisfy the criterion for Bechmann's number in every direction. Numerical and graphical results are provided for AT-cut quartz, (yxl)- 45°langasite, and (yxl)-16.5°LiTaO(3) LFE resonators. The optimal electrodes of AT-cut quartz LFE resonators are also compared with those of AT-cut quartz thickness-field-excited (TFE) resonators.  相似文献   

7.
Optimal asymmetric tolerance design   总被引:7,自引:0,他引:7  
An asymmetric tolerance design occurs when deviation (from the ideal target) of a quality characteristic in one direction is more harmful than in the opposite direction. Asymmetric tolerances are common in many manufacturing processes. Traditionally, the designer of a manufactured component either would choose the smaller tolerance as the tolerance for both sides of the ideal target, or would set a process mean at the middle of the tolerances. Both methods fail to minimize the expected value of Taguchi's societal quality losses when the quality loss function is asymmetric. Linear and quadratic quality loss functions are considered to determine the optimal value of a process mean that minimizes the expected value of the quality loss function. Also, a quality loss model involving a pokayoke defect prevention procedure is investigated.  相似文献   

8.
A model is presented for jointly determining the profit-maximizing number of workstations and interstation buffer capacities for stochastic unpaced lines. Several important implementation issues are discussed and system sensitivities examined, providing the line designer with new and important tools and insights.  相似文献   

9.
A new mathematical optimization technique, geometric programming, is used to optimize a number of journal bearing design problems. Though a few simplifying assumptions must be made in order to write the bearing design problem mathematically, no additional simplifying assumptions are required in order to apply geometric programming. Geometric programming is found to be a powerful technique for optimizing journal bearing design problems.  相似文献   

10.
This paper presents refined finite element models based on higher-order displacement fields to study the mechanical and electrical behavior of laminated composite plate structures with embedded and/or surface bonded piezoelectric actuators and sensors. Sensitivity analysis and optimization techniques are also applied in order to maximize the piezoelectric actuator efficiency, improve the structural performance and/or minimize the weight of the structure. The application of structural optimization to the static shape control of adaptive structures is also addressed. To show the performance of the proposed models, several illustrative and simple examples are presented.  相似文献   

11.
Dynamic analysis and optimal design of a piezoelectric motor   总被引:4,自引:0,他引:4  
This paper presents the dynamic modeling of a bimodal piezoelectric ceramic motor by use of the finite element method. The extended Hamilton's principle is utilized for formulating the dynamic equation of motion, and the Lagrange multiplier method is used to model the contact dynamics between the resonator beam tip and the rotor. The numerical simulation result is approximate to the practical experimental data, which indicates that the modeling and the experiment are fairly accurate. The Taguchi experimental design method is applied to decrease the experimental effort and find the optimal design. This approach shows that the shape of the output head of the motor determines the output performance significantly. The modified shapes of output head also are carried out with a practical experiment to verify the outcomes based on the Taguchi experimental design method.  相似文献   

12.
A. Radman  Y.M. Xie 《工程优选》2013,45(11):1331-1348
The aim of this study was to design isotropic periodic microstructures of cellular materials using the bidirectional evolutionary structural optimization (BESO) technique. The goal was to determine the optimal distribution of material phase within the periodic base cell. Maximizing bulk modulus or shear modulus was selected as the objective of the material design subject to an isotropy constraint and a volume constraint. The effective properties of the material were found using the homogenization method based on finite element analyses of the base cell. The proposed BESO procedure utilizes the gradient-based sensitivity method to impose the isotropy constraint and gradually evolve the microstructures of cellular materials to an optimum. Numerical examples show the computational efficiency of the approach. A series of new and interesting microstructures of isotropic cellular materials that maximize the bulk or shear modulus have been found and presented. The methodology can be extended to incorporate other material properties of interest such as designing isotropic cellular materials with negative Poisson's ratio.  相似文献   

13.
The stator design of a new type of spherical motor driven by piezoelectric actuators is developed. A curved piezoelectric actuator is designed to attach to the spherical surface. A series of the curved piezoelectric actuators is laid in a line around a spherical surface. By applying an appropriate voltage signal with phase difference on neighboring actuators, a traveling wave is generated on the hemispherical shell. Each set of curved piezoelectric actuators is designed to provide motion with a single degree-of-freedom (DOF). With two or three sets of the piezoelectric actuators constructed to be mutually perpendicular, the motor can provide 2-DOF or 3-DOF motion. Stator design and analysis and experiment for the 1-, 2-, and 3-DOF conditions are presented in this article. Analytical calculation and experiment results of several fundamental characteristics of the stator are in good agreement. Performance evaluation of rotation speed and torque of the stator and some implementation problems are also addressed.  相似文献   

14.
In this work we present a mixed-integer model for the optimal design of production/transportation systems. In contrast to standard design problems, our model is originally based on a coupled system of differential equations capturing the dynamics of manufacturing processes and stocks. The problem is to select an optimal parameter configuration from a predefined set such that respective constraints are fulfilled. We focus on single commodity flows over large time scales as well as highly interconnected networks and propose a suitable start heuristic to ensure feasibility and to speed up the solution procedure.  相似文献   

15.
An optimization procedure has been developed to uniquely and efficiently determine the “best” local geometry design of a new composite ChamberCore structure. This procedure is based on minimization of the total mass of a single composite ChamberCore subject to a set of design and stress constraints. The stress constraints are obtained in closed form based on the composite box-beam model for various composite lamination designs and loading conditions. The optimization problem statement is constructed and then solved using the VMCON optimization program, which is an iterative sequential quadratic programming (SQP) technique based on Powell's algorithm. The sensitivity of the solution of the optimal geometry to the values of parameters that characterize the structural durability and the failure mechanism is discussed.  相似文献   

16.
The author considers two difficulties inherent to computational methodology of optimal magnet design for NMR (nuclear magnetic resonance): (a) spectral methods of magnetic field analysis that would be highly accurate, fast, and general, and (b) an optimization strategy that would eliminate physically as well as numerically unstable solutions. The least-squares approximation method of zonal harmonics with iterated accuracy improvement is shown to be an effective alternative for the highly accurate spectral analysis of magnetic field in NMR applications. The principle of stability, the averaging of perturbed solutions, and Monte Carlo evolution methods are recommended for optimal magnet design in NMR. Examples of real-world magnet designs are presented  相似文献   

17.
It is shown that it is possible to increase the sensitivity of a sensor to characteristic radiation by concentrating the electric-field strength under resonance conditions in metal-oxide-metal structures. __________ Translated from Izmeritel’naya Tekhnika, No. 3, pp. 47–51, March, 2008.  相似文献   

18.
This paper presents a design methodology for a laminated composite stiffened panel, subjected to multiple in-plane loads and bending moments. Design variables include the skin and stiffener ply orientation angles and stiffener geometry variables. Optimum designs are sought which minimize structural weight and satisfy mechanical performance requirements. Two types of mechanical performance requirements are placed on the panel, maximum strain and minimum strength. Minimum weight designs are presented which document that the choice of mechanical performance requirements cause changes in the optimum design. The effects of lay-up constraints which limit the ply angles to user specified values, such as symmetric or quasi-isotropic laminates, are also investigated.  相似文献   

19.
基于波束形成方法的噪声源识别中,阵列性能影响着声源识别的效果。针对轮形阵列,采用正交试验的方法,对阵列的几何参数进行优化设计。通过逐步缩小参数最优值的取值范围,使在传声器数目和阵列尺寸一定的情况下,阵列的声源识别效果得到改进。经优化,轮形阵列的最大旁瓣水平曲线在很宽的频率带上保持在16 dB以下,比普通轮形阵列的最大旁瓣水平降低了3 dB以上。验证了正交试验方法在阵列优化设计的可行性,为波束形成装置的开发提供了理论依据。  相似文献   

20.
This paper proposes an L-shaped piezoelectric motor consisting of two piezoelectric bimorphs of different lengths arranged perpendicularly to each other. The coupling of the bending vibration mode of the bimorphs results in an elliptical motion at the tip. A detailed finite element model was developed to optimize the dimensions of bimorph to achieve an effective coupling at the resonance frequency of 246 Hz. The motor was characterized by developing rotational and linear stages. The linear stage was tested with different friction contact surfaces and the maximum velocity was measured to be 12 mm/s. The rotational stage was used to obtain additional performance characteristics from the motor: maximum velocity of 120 rad/s, mechanical torque of 4.7 × 10-(5) N·m, and efficiency of 8.55%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号