首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study presents a fabrication-based approach to improve the curl-up effect in complementary metal oxide semiconductor (CMOS) multilayer large-area planar structures. Control of the residual stress of CMOS multilayer microstructures is necessary for development of microelectromechanical systems (MEMS) sensors such as accelerometers and micromirrors. In this work, 3D symmetric geometry can be used to overcome effectively the residual stresses in CMOS multilayer microstructures. To demonstrate this concept, a symmetric multilayer flat-plane is fabricated and release-etched using an isotropic plasma etching process. The isotropic etch characteristics and lateral undercut can be controlled using a chamber pressure of 0.47 ± 0.2 Torr. A flat-plane structure with an area of 500 μm × 500 μm is fabricated using multilayer materials, including four metal and three silicon dioxide layers. Based on this approach, the measured results show the residual stress effect can be minimized in CMOS multilayer microstructures, and furthermore the curl-up effect of flat-plane is less than 2 μm across the 500 μm × 500 μm area.  相似文献   

2.
Novel tunable lasers based on 1.5-μm and 1.57-μm cascaded distributed-feedback reflectors are realized for real-time monitoring of H2O and CO gas mixtures immediately in multi-gas sensor systems. With simple fabrication procedures, the new design allows the realization of a widely tunable laser source that can cover the H2O and CO absorption wavelength bands. With the temperature tuning of 0.1 nm/°C and current tuning of 0.014 nm/mA, the laser can be tuned to cover over 3 nm wavelength range in each wavelength band. Experiments verify that the lasers can have more than 38 dB SMSR over the tuning range. The characteristics of high power, excellent spectral purity, and simple wavelength switching control can simplify the analysis procedures of gas sensing and thus reduce the cost. By direct absorption method, the tunable laser has been successfully adopted in a diode laser sensor system for monitoring of water vapor concentration near 1.5 μm and carbon monoxide near 1.57 μm. Less than 15% error in the line strength is observed between the measured data and HITRAN database.  相似文献   

3.
Flexible micro temperature and humidity sensors on parylene thin films were designed and fabricated using a micro-electro-mechanical-systems (MEMS) process. Based on the principles of the thermistor and the ability of a polymer to absorb moisture, the sensing device comprised gold wire and polyimide film. The flexible micro sensors were patterned between two pieces of parylene thin film that had been etched using O2 plasma to open the contact pads. The sacrificial Cr spacer layer was removed from the Cr etchant to release the flexible temperature and humidity sensors from the silicon substrate. Au was used to form the sensing electrode of the sensors while Ti formed the adhesion layer between the parylene and Au. The thickness of the device was 7 ± 1 μm, so the sensors attached easily to highly curved surfaces. The sensitivities of the temperature and humidity sensor were 4.81 × 10−3 °C−1 and 0.03 pF/%RH, respectively. This work demonstrates the feasibility and compatibility of thin film sensor applications based on flexible parylene. The sensor can be applied to fuel cells or components that must be compressed.  相似文献   

4.
This paper presents a micro roller embossing process for patterning large-area substrates of laminated green ceramic tapes. The aim of this research is to develop a large-area microstructure formation technique for green ceramic substrates using a thermal roller laminator, which is compatible with screen printing apparatus. A thin film nickel mold was developed via photolithographic patterning and nickel electroplating on a 75-μm-thick nickel film. The mold had an effective panel size of 150 mm × 150 mm with the height of plated protrusive patterns being about 38 μm. Formation of micro patterns was successfully demonstrated over the whole panel area on laminated green ceramic tapes using roller embossing. Micro patterns for inductors, heaters as well as interconnection with 50 μm line-width were embossed on green ceramic substrates. By means of tuning process parameters including roller temperature, applied pressure and feeding speed, we have demonstrated that micro roller embossing is a promising method for patterning large-area green ceramic substrates.  相似文献   

5.
In this contribution we report on a miniaturized bulk micro-machined three-axes piezoresistive force sensor. The force sensor consists of a full membrane with 16 conventional two terminal p-type diffused piezoresistors on the surface of the membrane. The die size of the chip is 6.5 mm × 6.5 mm. Piezoresistors with four different designs were placed on the membrane. Sensitivities were found to be in the range of 0.37–0.79 mV/(V mN) and 1.68–2.92 mV/(V mN) in Z-direction and X- or Y-direction, respectively. The stiffness of the measured microprobes in the range of 5–8 mN/μm and 0.27–0.48 mN/μm were obtained in vertical and lateral direction, respectively. Various single and twin membranes designs were simulated to calculate stiffness of the microprobe. The measurement results show a cross-axis sensitivity of <2.5% at full scale of 25 mN.  相似文献   

6.
Metal multi-user MEMS processes (MetalMUMPs) offered by MEMSCAP provide a 20 μm thick electroplated nickel film suitable for constructing micro RF tunable capacitors, RF inductors, relays, switches, etc. Currently the Young's modulus and the residual stress gradient of the MetalMUMPs nickel film have not been characterized. In this paper the resonance method is used to characterize the Young's modulus of the MetalMUMPs nickel film. The characterization results show that the nickel film has a Young's modulus of 155–164 GPa with an average of 159 GPa. A stress gradient induced free beam mechanism is proposed in this paper to characterize the residual stress gradient in the MetalMUMPs nickel film. Characterization results show that the residual stress in the electroplated nickel film has a gradient across the film thickness of −5.49 MPa/μm to −4.30 MPa/μm with the average of −4.72 MPa/μm. The residual stress change from the bottom surface to the top surface of the nickel film is −97.7 MPa. The Young's modulus and residual stress gradient of the MetalMUMPs nickel film obtained in this paper provide MetalMUMPs users an important reference for designing, optimizing and analyzing suspended nickel structures. The stress gradient induced free beam mechanism proposed in this paper provides a method of characterizing negative residual stress gradient in thin films without using trenches or through-wafer holes.  相似文献   

7.
Tellurium tubular crystals were grown by direct thermal evaporation of tellurium metal in an inert atmosphere on quartz substrates at ambient pressure without employing any catalyst. Tellurium powder was evaporated by heating at 600 °C and was condensed at a substrate temperature of 300–350 °C in the downstream of argon gas at a flow rate of 100 mL/min. The structure and chemical composition of the as-synthesized samples were examined by X-ray diffraction analysis, scanning electron microscopy, energy-dispersive X-rays microanalysis and micro-Raman spectroscopy. Scanning electron microscopy images and X-ray diffraction patterns showed that the as-synthesized Te had a tubular single-crystalline morphology with a hexagonal cross-section. The Te microtubes were typically 0.5–6 mm long, 30–70 μm in external diameter, and 5–20 μm thick. NO2 gas-sensing properties of the Te microtubes at room temperature were also investigated. They showed a promising sensitivity and response towards tested gas.  相似文献   

8.
In this paper we present a novel approach to preparing large-displacement 65Pb(Mg1/3Nb2/3)O3–35PbTiO3/Pt (65/35 PMN–PT/Pt) bimorph actuators. These “substrate-free”, bending-type actuators were prepared by screen-printing the 65/35 PMN–PT and Pt thick-film pastes as the electrodes on alumina substrates. After this screen printing and the subsequent firing the 65/35 PMN–PT/Pt composites were peeled off from the substrates. Displacements of nearly 100 μm at 18 V were achieved for actuators with dimensions of 1.8 cm × 2.5 mm × 50 μm for the 65/35 PMN–PT layer. The normalized displacement (the displacement per unit length) was 40 μm/cm at 18 V. The experimental results together with a computation procedure were used to obtain the material parameters for a finite-element analysis of the 65/35 PMN–PT/Pt bimorph actuators.  相似文献   

9.
We describe three new automated methods for purifying genomic DNA from whole blood. The MagneSil® Blood Genomic, Max Yield System uses MagneSil® paramagnetic particles (PMPs) in a 96-well format to purify the maximal amount of DNA from a 200-μL blood sample. In contrast, the MagneSil® ONE, Fixed Yield Blood Genomic System uses MagneSil® Fixed Yield PMPs to purify a normalized amount of DNA from 60 μL of blood in a 96-well format. These methods are implemented on the Beckman Coulter Biomek® FX automated workstation. The MagneSil® KF Genomic System uses MagneSil® PMPs to purify DNA from 1 to 15 samples of 200-μL blood using the moderate-throughput Thermo Electron KingFisher® mL instrument.The MagneSil® Blood Genomic System typically yields > 4 μg per 200 μL of whole blood, depending on the white blood cell content. The MagneSil® ONE System is best suited where there is a requirement for purification of a narrow concentration range of DNA. This system purifies 1 μg (±50%) of DNA from 60 μL of blood. The MagneSil® KF System purifies 2 to 6 μg of DNA from 200 μL of blood. DNA purified using all of these methods is suitable for PCR, STR, READIT® SNP genotype analysis, and multiplexed PCR analysis.  相似文献   

10.
A new capacitive infrared detector structure that incorporates one electrically floated top electrode that acts as an infrared absorber and two bottom electrodes is proposed and fabricated. The concept begins from an attempt to remove metal lines, the main heat transfer media in the thermal-type infrared detector, from the device's thermal insulation section. A thermal insulation section can be composed without metal lines and instead be solely comprised of an insulator having very low thermal conductivity compared to metals. Therefore, low thermal conductance can be easily achieved with small dimensions of thermal insulation section material. The floating electrode is electrically disconnected from the substrate. Instead, the capacitance change is read only using the two bottom electrodes, which are separated from the absorber and placed on the substrate. The position of the top electrode (infrared absorber) is changed through a bimorph actuation in accordance with the absorption of LWIR (8–12 μm) rays, with an absorptance of 70%. This approach provides an enlarged fill-factor (25%) compared with earlier devices, because the portion of the leg in the pixel area is reduced, whereas the portion of the absorber area is increased. With the small dimension of the thermal insulation section (0.2 × 2 × 10 μm3), thermal conductance of 1.27 × 10−7 W/K is achieved. In addition, the shortened leg lends the device a higher spring constant relative to the conventional devices, and therefore a higher signal reading voltage can be achieved, resulting in increased temperature responsivity. With the bimorph-type infrared detector's characteristics of low noise and high sensitivity, the proposed structure can achieve a low NETD value of 12.7 mK.  相似文献   

11.
A.  D.  K.  O.  E.V. 《Sensors and actuators. A, Physical》2008,147(2):474-484
This paper describes the design, fabrication and application of a micro-fabricated salinity sensor system. The theoretical electrochemical behaviour is described using electrical equivalent diagrams and simple scaling properties are investigated analytically and numerically using finite element method (FEM). The chip design and fabrication is described and measurement results of two different electrode designs are presented. The 4 mm × 4 mm multi-sensor allows for salinity determination with an accuracy of ±0.5 psu through determination of the electrical conductivity, temperature and pressure with accuracies of ±0.6 mS, ±0.065 ° C and ±0.05 bar, respectively.  相似文献   

12.
ZnO nanopowders were prepared through microwave heating method. ZnO thick film sensors were fabricated by using ZnO nanopowders as sensing materials. The phase composition and morphology of the material particles were characterized by means of X-ray diffraction (XRD) and transmission electron microscopy (TEM), respectively. The gas-sensing properties of the sensors based on ZnO nano-materials were investigated. It was found that the sensor based on ZnO nano-materials (low power, 10× 10 min) exhibited very high responses to benzene and toluene when operating at 440 and 370 °C, respectively; but the sensor based on ZnO (low power, 10× 10 min) showed very low responses to benzene and toluene when operating at 205–215 °C. The sensor based on ZnO (low power, 10× 10 min) showed high response and good selectivity to dilute formaldehyde when operating at 210 °C; especially, the response to 0.001 ppm HCHO attained 7.4 when operating at 210 °C.  相似文献   

13.
We present the design, fabrication, and characterization of a multi-chip microelectrofluidic bench, achieving both fluidic and electric interconnections with simple and low pressure-loss interconnections. The microelectrofluidic bench provides easy alignment of fluidic interconnection using microfabricated annular fluidic connectors; also provides simple electric interconnection using isotropic conductive adhesives at room temperature. Thus, the present microelectrofluidic bench provides a modular concept for fluidic and electric interconnection. In experimental study, we characterize pressure losses, electric resistances loss, and pressure stability of the interconnection. The average pressure drop per each fluidic contact is measured 0.12 ± 0.19 kPa at the DI water flow rate from 10 to 100 μl min−1. The electric resistance per each electric contact is measured as 0.64 ± 0.29 Ω. The fluidic interconnection endures maximum pressure of 115 ± 11 kPa. The present microelectrofluidic bench, therefore, offers a simple and low pressure-loss electrofluidic modular interconnection for electrofluidic multi-chip microsystems.  相似文献   

14.
This study reports a new microfluidic-based filter for size-tunable separation of microbeads or cells. The filtration separation mechanism is based on the pneumatically tunable deformation of poly-dimethylsiloxane (PDMS) membranes, which block the fluid channel with a varied degree. This defines the dimensions of the open area of the fluid channel and thus determines the maximum diameter the microbeads or cells which can pass through. The proposed device incorporates pneumatic micropumps for automatic liquid handling. Another unique feature of this filter is an unclogging mechanism using a back-flush operating mode, by which a reverse-directional flow is utilized to flush the clogged filter zone. The separation performance of the proposed device has been experimentally evaluated. Results show that this developed device is able to provide precise size-dependent filtration, with a high passage efficiency (82–89%) for microbeads with sizes smaller than the defined void space in the filter zone. Also, the proposed separation mechanism is also capable of providing a reasonable filtration rate (14.9–3.3 μl/min). Furthermore, the separation of chondrocytes from a 30 μl suspension of enzymatically digested tissue is successfully demonstrated, showing an excellent cell passage efficiency of 93% and a cell viability of 96%. The proposed device is therefore capable of performing cell separation in situations where either the harvested specimen is limited or the sample cell content is sparse. It also paves a new route to delicately separate or to isolate cells in a simple and controllable manner.  相似文献   

15.
B.G.  Y.  B.Z.  J.P.   《Sensors and actuators. A, Physical》2008,147(2):536-543
A wireless stress/strain measurement system is developed by integrating with pressure-sensitive sensors for health monitoring of concrete structures. The pressure-sensitive stress/strain sensors are fabricated by using nickel powder-filled cement-based composite. The wireless stress/strain measurement system integrated with these sensors is tested with compressive stress/strain in the range from 0 MPa/0 μ to 2.5 MPa/311.5 μ for performance evaluation. Experimental results indicate that the electrical resistivity of pressure-sensitive nickel powder-filled cement-based stress/strain sensors changes linearly and reversibly with the compressive stress/strain, and its fractional change goes up to 42.719% under uniaxial compression. The relationship between input (compressive stress/strain) and output (the fractional change in electrical resistivity) of the wireless stress/strain measurement system integrated with pressure-sensitive sensors is Δρ = −0.16894σρ = −1336.5. The wireless stress/strain measurement system can be used to achieve a sensitivity to stress/strain of 16.894% MPa−1/0.13365%μ−1 (a gauge factor of 1336.5) and a stress/strain resolution of 150 Pa/0.02 μ. The newly developed wireless stress/strain measurement system integrated with pressure-sensitive nickel powder-filled cement-based sensors has such advantages as high sensitivity to stress/strain, high stress/strain resolution, simple circuit and low energy consumption.  相似文献   

16.
This work presents optical enzyme detection system based on the CMOS array photo sensor and 1 × 3 polymeric enzyme biochip for detecting Escherichia coli in a one-step procedure. This assay, using 4-methylumbelliferyl-β-d-glucuronide (MUG) as a fluorogenic substrate, had a detection limit of 0.1 U/ml for β-glucuronidase (GUD), which was approximately equal to a cell concentration of 106 CFU/ml of E. coli. MUG was incorporated into lauryl tryptose broth at a final concentration of 100 μg/ml for immediate verification of the presence of E. coli in 1 × 3 polymeric enzyme biochip. The 40 strains of E. coli studied all produced GUD. Of another 36 strains of bacteria tested, one strain (Salmonella choleraesuis subsp. choleraesuis) yielded very small amounts of GUD after 24 h incubation. The optical enzyme detection system was sensitive and rapid.  相似文献   

17.
A novel quartz crystal microbalance (QCM) sensor with a high selectivity and sensitivity has been developed for the determination of Cu(II) ions, based on the modification of Cu(II) ion-imprinted polymer (Cu(II)-IIP) film onto a quartz crystal. The performance of the developed MIP-QCM sensor was evaluated and the results indicated that a sensitive MIP-QCM sensor could be fabricated. The obtained MIP-QCM sensor presents high-selectivity monitoring of Cu(II) ions, better reproducibility, shorter response time (6 min), wider linear range (0.001–50 μM) and lower detection limit (8 × 10−4 μM). The practical analysis of the MIP-QCM sensor confirms the feasibility of Cu(II) determination in wastewater.  相似文献   

18.
A novel mercury-based capacitive accelerometer has been designed and fabricated. The accelerometer features a highly symmetrical cubic structure and capacitive coupling of the high-frequency input voltage, which uses a mercury drop for spring material and flexible interconnection layer between the capacitor plates. The device is mounted on a standard IC package with dimensions of 5 mm × 5 mm × 5 mm. The structure, working principle, fabrication, and mathematical model of the accelerometer are presented. Since the accelerometer uses a mercury drop as its sensitive electrode instead of a solid, which is commonly used in traditional accelerometers, the conflict between the requirements of high shock and high sensitivity is solved. The measurement results show a sensitivity of 0.2 mV (m s−2)−1 with a corresponding resolution of 0.01 ms−2, off-axis sensitivity of <5% and good linearity in the output voltage for accelerations up to at least 10 m s−2.  相似文献   

19.
A quasi-three-dimensional (quasi-3-D) cell-based biosensor platform microfabricated from SU-8 has been developed and characterized. In this work, SH-SY5Y human neuroblastoma cells were integrated with SU-8 microfabricated microwells with diameters of 100 μm. SH-SY5Y cells were differentiated with 1 mM dibutyryl cAMP and 2.5 μM 5-bromodeoxyuridine. Voltage-gated calcium channel (VGCC) function of SH-SY5Y cells cultured within the microwells (quasi-3-D) versus those cultured on the SU-8 planar substrates (2-D) was evaluated by confocal microscopy with a calcium fluorescent indicator, Calcium Green-1. In response to 50 mM high K+ depolarization, cells in microwells were less responsive in terms of increase in intracellular Ca2+ in comparison to cells on 2-D substrates. This study shows that VGCC function of cells within SU-8 microwells was indeed different from that of cells on planar SU-8 surfaces, suggesting that SU-8 microstructure did affect SH-SY5Y cell differentiation with respect to VGCC function and that high-aspect-ratio microstructures are not merely “folded” 2-D structures. Furthermore, these results are consistent with previous 2-D/3-D comparative studies carried out in polymer scaffolds and support the hypothesis that cell calcium dynamics on 2-D substrates may be exaggerated. Overall, this work is supportive of SU-8 micropattern as a viable platform for engineering a quasi-3-D cell culture system for cell-based biosensing against drugs for VGCCs.  相似文献   

20.
A new amperometric ethanol sensor has been developed. The sensor uses the silicon nanowires covered with co-deposited palladium–nickel (Pd–Ni/SiNWs) as the working electrode. The detection of ethanol concentration is based on the response currents resulted from the electro-catalytic oxidation of ethanol. The performance of the sensor was characterized by cyclic voltammetry and fixed potential amperometry techniques. In 1 M KOH solution containing different ethanol concentrations, the sensor shows a good sensitivity of 7.48 mA mM−1 cm−2 and the corresponding detection limit (signal-to-noise ratio = 3) of 6 μM for cyclic voltammetry. Meanwhile, it also displays a sensitivity of 0.76 mA mM−1 cm−2 and the corresponding detection limit of 10 μM for fixed potential amperometry. The results demonstrate that the Pd–Ni/SiNWs electrodes are potential as the electrochemical integrated sensors for ethanol detection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号