首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work, our goal is to develop a voltage-controlled variable-frequency quartz crystal oscillator with narrowband response, wide, variable frequency range and the capacity to oscillate across the series resonance frequency using a four-segment configuration of a quartz crystal oscillator. In conventional quartz oscillators, the quartz resonator is inserted in the feedback loop between the input and the output of the active circuit, providing sufficient gain and the phase relation. In the oscillator developed here, the quartz crystal resonator is inserted between the loop circuit and the ground potential. The performance of the voltage-controlled variable-frequency oscillator is demonstrated across the series resonance frequency.  相似文献   

2.
The generation of very narrow spectral lines in the far-infrared by frequency synthesis from VHF precision sources requires very stringent specifications on the spectral purity of the source and on the phase noise introduced by the synthesizer. The dc measurements of the AM-PM conversion in different multiplier stages are presented in this paper: stages employing transistors, varactors and step-recovery diodes are examined. The results show that a few degrees per dB of input level variation are typical for the AM-PM conversion reported to the input in a simple, carefully built and well tuned multiplier stage employing any of the mentioned solid state devices. This value is shown to be unlikely to degrade more than the expected n2 factor the spectral purity of a signal with AM noise as low with respect to PM noise as it is in the output of a good quartz crystal controlled oscillator; however, such a conversion could become a source of phase noise, with degradation of the spectral purity, for a signal with a slightly worse AM noise.  相似文献   

3.
A simplified model of the transistor sustaining stage employed in common quartz-crystal oscillators is presented. Examination of the model, including associated noise sources, provides an explanation for general differences observed in the output-frequency spectra of several types of widely used self-limiting crystal oscillator circuits. A self-limiting quartz-crystal oscillator circuit configuration is described that has been specifically designed to exhibit simultaneously each of the three important circuit characteristics necessary for improved oscillator short-term frequency/phase stability: large value of oscillator resonator loaded Q, adequate suppression of 1/f flicker-of-phase type noise, and improvement in oscillator ultimate signal-to-noise ratio. Several models of the oscillator circuit have been constructed employing high quality third overtone 5-MHz AT- and BT-cut quartz resonators. Measurement of oscillator short-term frequency stability using conventional phase lock and sampling techniques confirm attainment of substantial improvement in oscillator short-term frequency stability when compared to conventional self-limiting oscillator circuits.  相似文献   

4.
A simple planar resonator using a magnetostatic wave (MSW) excited by aluminum finger electrodes with two bonding pads was realized on YIG/GGG (yttrium-iron-garnet film on a gadolinium-gallium-garnet crystal) substrate with two reflection edges. The tunable MSW resonator chip (2 mm×5 mm) exhibited a sharp notch filter response, as deep as 20-35 dB, and a high loaded Q up to 2000, which was tunable over the microwave frequency range from 2 to 4 GHz. A small tunable oscillator (8 cm3) was experimentally demonstrated using the MSW planar resonator and a silicon bipolar transistor integrated on a ceramic microwave circuit substrate. Microwave oscillation with spectral purity, at the same level as that of YIG sphere technology, was observed at 3 GHz. The experimental results indicate the technical areas where improvement must be made to realize a practical oscillator configuration  相似文献   

5.
A major sensitivity limitation common to most microwave CW balanced-bridge systems must be attributed to bridge distortion noise, caused by residual FM in the transmitted signal. The described superheterodyne transceiver minimizes this limit for a narrowband K-band bridge system by utilizing precise, coherent IF detection. A phase-locked local oscillator provides means for an arbitrary, stable preselection of the in-phase or quadrature component with the help of a calibrated IF delay line. The transmitter is either 1) frequency-stabilized to a sample cavity by means of a high-gain AFC loop, or 2) phase-locked simultaneously to a K-band harmonic of a VHF quartz oscillator and to a tunable VHF oscillator (VFO). This yields flexibility in a wide range of applications, such as measuring small reflection coefficients, dielectric constants, or magnetic tensor susceptibilities (e. g., in ESR spectroscopy). Analytical expressions for phase and amplitude distortions are derived for a bridge containing one high-Q element. In the systems theory of operation, analytical formulas for the noise spectral densities and the loop errors are given, together with numerical examples. The additional receiver noise, due to residual FM and increased bridge power, is demonstrated by means of measured IF-noise spectra. A cavity-Q measurement with ±1 percent accuracy, using 5-?W incident bridge power, proves the system's capability for measurements of small reflection coefficients.  相似文献   

6.
For years, engineers and scientists have been plagued by an extremely undesirable property of the quartz crystal unit-its significant frequency shift as a function of drive level for drive levels in excess of 10 to 100 ?W. This fact was reported by Hammond [1]. As a result, all precision and moderate precision quartz oscillators have been operated at low drive in an effort to avoid the phenomena. The author has discovered, however, that this unique property of the quartz resonator can be effectively utilized in the design of the quartz oscillator with the result of substantial improvement in oscillator short-term frequency stability. Futhermore, since the crystal frequency-drive characteristic is repeatable, maintenance of moderately high crystal drive in the oscillator circuit will not result in long-term frequency instability in excess of that required for the majority of radar and communication systems [2].  相似文献   

7.
A technique for accurate measurements of quartz crystal resonator vibration sensitivity is described. The technique utilizes a crystal oscillator circuit in which a prescribed length of coaxial cable is used to connect the resonator to the oscillator sustaining stage. A method is provided for determination and removal of measurement errors normally introduced as a result of cable vibration. In addition to oscillator-type measurements, it is also possible to perform similar vibration sensitivity measurements using a synthesized signal generator with the resonator installed in a passive phase bridge. Test results are reported for 40 and 50 MHz, fifth overtone AT-cut, and third overtone SC-cut crystals. Acceleration sensitivity (gamma vector) values for the SC-cut resonators were typically four times smaller (5x10(-10) per g) than for the AT-cut units. However, smaller unit-to-unit gamma vector magnitude variation was exhibited by the AT-cut resonators. Oscillator sustaining stage vibration sensitivity was characterized by an equivalent open-loop phase modulation of 10(-6) rad/g.  相似文献   

8.
Oscillator-based measurements with quartz crystal resonators are analyzed. The investigations have shown that classical thickness monitors as well as many chemical vapor sensors based on a quartz crystal microbalance (QCM) work properly, even with simple oscillators. It was demonstrated that, for applications in a liquid environment, more sophisticated electronics are necessary. Also a comparison between the experimental results in liquids and the theoretical predictions is hardly possible without the knowledge of the oscillator behavior. As our solution, we present an automatic gain-controlled oscillator with two output signals, the oscillator frequency, and a signal that represents the damping of the quartz resonator. A calibration method is introduced, which allows one to calculate the series resonance frequency f/sub s/ and the series resistance R/sub s/ from these oscillator signals.  相似文献   

9.
Parametric oscillators have been well studied but currently are not used often. Nevertheless, they could be a low-phase noise solution, at least outside the frequency bandwidth of the resonant circuit. The theoretical aspect of parametric oscillations is briefly reviewed in this paper. Indeed, the basic theory of a simple resistance-inductor-capacitor (RLC) circuit working in parametric conditions easily can be extended toward a resonant loop that includes a quartz crystal resonator. Then, as an application, this study is transposed to a quartz crystal oscillator that has been modeled and tested as a first prototype. Simulation results are compared with those actually obtained.  相似文献   

10.
11.
The Navy Navigation Satellite System (NNSS) uses precision quartz crystal oscillators to provide time and frequency in the orbiting spacecraft. The frequency changes for multiple oscillators, which were observed for 28 years of operational service in the orbital environment, are discussed. The primary frequency changes are believed to be caused by mass transfer to and from the resonator, stress relief in the resonator mounting structure and electrodes, and ionizing radiation of the quartz resonator. Observations to a resolution of 10- 13 have been made from 1963 to 1991 on 20 operational satellites in near-Earth orbit. No oscillator failures have occurred during the entire program life of nearly 30 years. One oscillator provided continuous operational service for over 21 years, and several have served more than 15 years. No oscillator changed frequency more than two parts in 107 while in operational service. One of the best performing oscillators had a predictable drift rate of 9x10(-13)+/-1x10(-13) per day after three years of service.  相似文献   

12.
In this paper, we review a new piece of equipment that allows one to characterize the phase noise of crystal resonators using a phase bridge system with carrier suppression. This equipment allows one to measure the inherent phase stability of quartz crystal resonators in a passive circuit without the noise usually associated with an active oscillator. We achieved a system noise floor of approximately -150 dBc/Hz at 1 Hz and -160 dBc/Hz, at 10 Hz. A SPICE characterization of the carrier suppression system is given. An investigation of the phase modulation (PM) noise in 10 MHz BVA, SC-cut quartz crystal resonator pairs is presented.  相似文献   

13.
A new trend in self-contained (without the use of quantum discriminators) frequency stabilization of an oven controlled crystal oscillator (OCXO) and frequency standard is proposed and discussed. The method developing the trend is called a modulational method and is based on the use of the reference properties of crystal resonator natural bulk vibrations (double-frequency and multi-frequency oscillators are not used in this case). The concept is based on dynamic modulation characteristics of an oscillator, and basic relationships are found for their calculation. The construction principles of the frequency control systems are formulated substantiating mathematically the essence of the method. Basic ratios of modulating signals are determined, the solution of which shows only a slight influence of the modulation signal on the Allan variance and spectral density of an OCXO. The results of the method's practical use are considered. Their subject is the OCXO with the oven system adapted to the ambient temperature and crystal frequency standard with aging rate compensation.  相似文献   

14.
15.
Leeson's is the basic model for predicting oscillator noise. A mathematical analysis of this "heuristic" model has been proposed. Both models do not detail the relative importance of the amplifier transfer function associated to its own noise with regard to that of the resonator. In this paper, an improved version of those previous models is presented. The phase noise generated by the amplifier and the one generated by the resonator are differentiated without considering their origins, such as the conversion of amplitude modulation noise into phase modulation noise. The power spectral densities of phase noise at various points of the oscillator loop are calculated from their respective correlation functions. As a consequence, the influence of the inner amplifier and resonator noises on the resulting oscillator noise is predictable. The model is especially attractive to the makers of widely used quartz oscillators. The resulting oscillator noise is easily obtained from the oscillator open-loop noise. An example of the phase-noise modeling of the Clapp quartz crystal oscillator is simulated and discussed.  相似文献   

16.
The intrinsic noise of the best quartz crystal resonators is significantly less than the noise observed in oscillators employing these resonators Several problem areas common to traditional designs are pointed out and a new approach is suggested for their solution. Two circuits are described which frequency lock a spectrally pure quartz crystal oscillator to an independent quartz crystal resonator. The performance of the composite system is predicted based on the measured performance of its components.  相似文献   

17.
A positive feedback system oscillating under self-sustained mode is shown to have an extremely high gain. Modeled as one port, the expected Q is much higher than the loaded Q-factor of the resonator. With just thermal noise present, random phase/frequency deviation is linear. Centered about the oscillator frequency omega/(0), noise frequency on both sides is more amplified with decreasing separation distance. Ultimately, frequency pulling may result in synchronous locking with hysteresis, which occurs because a real oscillator displays a truncated limiting curve. Once locked onto a signal, smaller levels are ignored. A new approach to the design and characterization of a simple tuned oscillator is offered: According to the phenomenon of injection locking, there exists an expected quality factor relating the shape of the truncated limiting curve to an ideal curve. In this paper, synthesis and innovative analytical methods of academic interest are revealed: 1) application of the transducer loss method is revised to establish a new method for oscillator characterization; 2) a transparent method of normalizing a two-port network in the presence of white noise is developed; and 3) in quartz crystal controlled oscillators, characterization of the noise originating from an equivalent noise-resistance determined from parameter of the quartz crystal is proposed. It is shown that the two-port model can also be approximated on a one-port basis. In conclusion, a sample of closed-form estimation of expected Q-factor order of magnitude of piezoelectric resonator oscillators is calculated.  相似文献   

18.
Due to the need for stable frequency rectangular wave signals, various relaxation quartz crystal oscillators were designed. Therefore it is of interest to have data on their short-term frequency stability. The generally accepted definitions of measures for short-term frequency stability and measurement procedures are reviewed in this paper. Measurement results for the short-term frequency stability of quartz crystal multivibrators in time and frequency domains show a high spectral purity of the multivibrator output signal. The single-sideband-to-carrier phase noise has values lower than -90 and -120 dB on the offset frequencies of 1 and 10 Hz, respectively. The white phase noise is about -160 dB. The power law spectral density model of fractional frequency fluctuations for the quartz multivibrators is established and a discussion on the noise sources is given.  相似文献   

19.
In this work we propose a novel circuit design: a double-resonance oscillator. Its oscillation shows two oscillation modes: frequency locking to the quartz crystal resonance and LC resonance oscillation. Transition of the oscillation mode and the strength of oscillation are analyzed and reviewed for the fundamental mode in comparison with a Colpitts oscillator. The experimental results support the estimates of negative resistance for the double-resonance oscillator compared with the LC oscillator.  相似文献   

20.
In this paper, a new contribution to the design of quartz crystal oscillators for high-sensitivity microbalance sensors used in liquid media is presented. The oscillation condition for a Miller configuration was studied to work in a wide dynamic range of the resonator losses. The equations relating the values of the active and passive components with the maximum supported damping and mass were obtained. Also, the conditions to obtain a stable frequency according to the resonator damping (R(Q)), the static capacity (Cp) and the filter frequency (f(F)) were found. Under these conditions, the circuit oscillation frequency will be proportional to the resonant series frequency and does not depend on the previous parameters (R(Q), f(F), and Cp). If these conditions cannot be satisfied, the expression of the oscillation frequency is given and the discrimination of these effects is obtained through resonator frequency measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号