首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
基于复合制冷技术研制一种低温最小量润滑供给装置,分析低温最小量润滑切削的冷却润滑作用,通过干切削、常温冷风、最小量润滑(Minimum quantity lubrication,MQL)、低温冷风、低温最小量润滑(低温MQL)5种冷却润滑条件下高速车削钛合金的切削温度、切削力对比试验,研究低温MQL在高速车削中的冷却润滑性能。结果表明,5种冷却润滑条件中,低温MQL能够最有效降低切削温度,且随着切削速度的提高,其降低切削温度的效果更明显;低温MQL优异的冷却效果有益于微量润滑油润滑作用的发挥,使其对切削区的润滑效果优于MQL,有效地降低高速车削钛合金时的切削力,改善刀具前刀面摩擦状况。  相似文献   

2.
本文在低温微量润滑(MQCL)及浇注式冷却条件下对不锈钢展开高速车削实验,对两种冷却条件下的刀具磨损情况进行对比分析。研究表明,两种条件下刀具都发生了磨粒磨损和粘结磨损,但MQCL条件下刀具磨损较轻;MQCL的冷却润滑机理主要为微量润滑油雾在切削区域形成了润滑膜,减小了刀具与工件的摩擦,同时低温冷风的加入对切削区域进行了强力降温。  相似文献   

3.
绿色切削技术探讨   总被引:7,自引:0,他引:7  
韩荣第  吴健 《工具技术》2006,40(12):8-10
介绍了绿色切削技术的国内外研究现状和发展方向,分析了干式切削、液氮冷却切削、水蒸汽冷却切削、气体射流冷却切削、低温风冷切削及最小量润滑切削的技术特点、应用条件、存在不足和研究重点。  相似文献   

4.
通过正交试验研究干切削SiCp/Al复合材料时,切削用量对已加工表面粗糙度的影响.选定切削用量,试验研究干式切削、压缩空气喷吹、油液浇注和最小量润滑油雾喷射切削区等冷却方式对加工表面粗糙度的影响.试验结果表明,以一定流量的油雾喷射冷却润滑切削所得的加工表面粗糙度,与传统的油液浇注切削所得的已加工表面粗糙度比较接近.  相似文献   

5.
硬态切削中的冷却润滑技术   总被引:2,自引:0,他引:2  
硬态切削是兼顾生态环境的重要性和制造业的经济性和新型制造技术,其切削参数与常规切削过程有很大的差别。文章提出了硬态切削中切削液使用的新概念,即喷雾冷却,低温冷却和最小量冷却润滑技术等。并给出了几种冷却方式的原理。  相似文献   

6.
为了研究冷却润滑条件及切削参数对TC4钛合金的切削力和表面粗糙度的影响,分别开展CMQL、冷风、浇注式冷却润滑条件的TC4钛合金高速切削实验、四种不同润滑环境的粗/半精/精加工实验以及CMQL条件下TC4钛合金正交切削试验,通过单因素分析和正交试验法研究冷却润滑条件及切削参数对切削加工性的影响。研究表明:CMQL冷却润滑条件可在TC4钛合金高速切削时有效降低切削阻力和改善表面粗糙度,并在高速精车削阶段体现出降低切削阻力的优势。考虑CMQL条件下高速精车TC4钛合金加工效率,最佳参数组合为较高的切削速度、较小的精加工余量和合适范围内较大的进给量。  相似文献   

7.
为实现304不锈钢的绿色切削,以过热水蒸气作冷却润滑介质,用Al2O3-TiC复相陶瓷刀具对304不锈钢进行单因素切削试验.试验结果表明:与干切削相比,用过热水蒸气冷却润滑切削时主切削力减小了6% ~17%,加工表面硬化程度降低了3%~6%,并具有较高的加工表面质量.根据试验结果和冷却润滑作用机理分析可知,过热水蒸气具有较好的冷却润滑作用,且廉价无污染,有望实现304不锈钢的绿色切削.  相似文献   

8.
微量油膜附水滴切削试验研究   总被引:1,自引:0,他引:1  
论述微量油膜附水滴(Oil on Water,OoW)加工液发生原理和冷却润滑特点.针对该切削液的冷却润滑特点进行车削试验研究,并在同干切削和乳化液冷却润滑加工方式对比研究的基础上,通过对切削力、平均摩擦因数和切屑形态的研究分析,揭示出微量油膜附水滴具有良好的冷却润滑效果.  相似文献   

9.
简述了油膜附水滴(Oils on Water,OoW)切削液的冷却润滑原理。为了研究油膜附水滴切削液和乳化液在切削45钢过程中的冷却和润滑性能,通过对浇注乳化液和OoW切削液两种冷却润滑方式下切削45钢的切削力、工件表面粗糙度的试验进行比较,分析两种切削液的冷却润滑性能。试验结果表明,使用OoW进行切削润滑,能够降低切削加工过程的切削力和工件表面粗糙度,与采用乳化液相比具有明显优势,为实际加工过程的切削参数选择及润滑液选择提供了重要参考。  相似文献   

10.
TC4铣削中超临界CO2混合油膜附水滴的冷却润滑性能   总被引:1,自引:0,他引:1  
在干切削、超临界CO2(scCO2)以及scCO2与油膜附水滴(OoW)混合三种绿色切削方式下对钛合金进行了铣削试验。通过单因素试验分析了铣削参数和冷却润滑方式对切削力、切削温度、表面粗糙度的影响规律,研究了scCO2与OoW混合冷却方式在钛合金铣削中的冷却润滑性能。结果表明,三种冷却润滑方式下,随着切削速度、每齿进给量和径向切宽的增大,切削力和切削温度均呈现增大趋势;当切削速度进一步增大时,依据高速切削加工理论,切削力和温度有增长变缓和下降的趋势;不同加工参数下,相比干切削和scCO2,scCO2与微量油膜附水滴混合冷却方式能有效减小切削力和降低切削温度,并获得良好的加工表面,具有良好的冷却润滑性能。  相似文献   

11.
Using a diamond cutting tool in the precision turning process, the vibration of tool-tip has an undesirable effect on the machined surface??s quality. The objective of this paper is to present the mathematical models for modeling and analyzing the vibration and surface roughness in the precision turning with a diamond cutting tool. Machining parameters including the spindle speed, feed rate and cutting depth were chosen as numerical factor, and the status of lubrication was regarded as the categorical factor. An experimental plan of a four-factor??s (three numerical plus one categorical) D-optimal design based on the response surface methodology was employed to carry out the experimental study. A micro-cutting test is conducted to visualize the effect of vibration of tool-tip on the performance of surface roughness. With the experimental values up to a 95% confidence interval, it is fairly well for the experimental results to present the mathematical models of the vibration and surface roughness. Results show that the spindle speed and the feed rate have the greatest influence on the longitudinal vibration amplitude, and the feed rate and the cutting depth play major roles for the transverse vibration amplitude. As the spindle speed increases, the overall vibration of tool-tip tends to more stable condition which leads to the results of the best machined surface. The effects of the feed rate and cutting depth provide the reinforcement on the overall vibration to cause the unstability of cutting process and exhibit the result of the worst machined surface.  相似文献   

12.
This research work concerns the elaboration of a surface roughness model in the case of hard turning by exploiting the response surface methodology (RSM). The main input parameters of this model are the cutting parameters such as cutting speed, feed rate, depth of cut and tool vibration in radial and in main cutting force directions. The machined material tested is the 42CrMo4 hardened steel by Al2O3/TiC mixed ceramic cutting tool under different conditions. The model is able to predict surface roughness of Ra and Rt using an experimental data when machining steels. The combined effects of cutting parameters and tool vibration on surface roughness were investigated while employing the analysis of variance (ANOVA). The quadratic model of RSM associated with response optimization technique and composite desirability was used to find optimum values of cutting parameters and tool vibration with respect to announced objectives which are the prediction of surface roughness. The adequacy of the model was verified when plotting the residuals values. The results indicate that the feed rate is the dominant factor affecting the surface roughness, whereas vibrations on both pre-cited directions have a low effect on it. Moreover, a good agreement was observed between the predicted and the experimental surface roughness. Optimal cutting condition and tool vibrations leading to the minimum surface roughness were highlighted.  相似文献   

13.
谢英星 《工具技术》2017,51(5):122-126
为有效控制和预测高硬度模具钢加工的表面质量和加工效率,通过设计正交切削试验,研究了在不同切削参数组合(主轴转速、进给速度、轴向切削深度和径向切削深度)及冷却润滑方式条件下、Ti Si N涂层刀具对模具钢SKD11(62HRC)的高速铣削。应用BP神经网络原理建立表面粗糙度预测模型,并进行试验验证其准确性。研究表明,在不同加工条件下,基于BP神经网络模型建立的涂层刀具铣削模具钢SKD11表面粗糙度模型有较好的预测精度,其预测误差在3.45%-6.25%之间,对于模具制造企业选择加工工艺参数、控制加工质量和降低加工成本有重要意义。  相似文献   

14.
This paper presents the results of an experimental investigation on the machinability of in situ Al-6061?CTiB2 metal matrix composite (MMC) prepared by flux-assisted synthesis. These composites were characterized by scanning electron microscopy, X-ray diffraction, and micro-hardness analysis. The influence of reinforcement ratio of 0, 3, 6, and 9?wt.% of TiB2 on machinability was examined. The effect of machinability parameters such as cutting speed, feed rate, and depth of cut on flank wear, cutting force and surface roughness were analyzed during turning operations. From the test results, we observe that higher TiB2 reinforcement ratio produces higher tool wear, surface roughness and minimizes the cutting forces. When machining the in situ MMC with high speed causes rapid tool wear due to generation of high temperature in the machining interface. The rate of flank wear, cutting force, and surface roughness are high when machining with a higher depth of cut. An increase in feed rate increases the flank wear, cutting force and surface roughness.  相似文献   

15.
为了研究车削钛合金TC11时切削速度和刀具磨损对已加工表面质量的影响,选用涂层硬质合金刀片CNMG120408在不同切削条件下进行车削试验,分析后刀面磨损量随切削时间的变化规律;对比磨损刀具与新刀具切削的工件表面,观察表面粗糙度、表面形貌、显微硬度以及表层微观组织情况,分析切削速度和刀具磨损对已加工表面质量的影响规律。试验结果表明:在刀具磨损初期,即新刀具切削时,切削速度从60m/min增加到100m/min,刀具磨损程度增大,表面粗糙度值降低,硬化层深度减小,加工硬化程度略微增大,表面塑性变形层深度减小;在刀具磨损终期,不同切削速度下的表面粗糙度增大,表面形貌变差,硬化层深度和加工硬化程度增加,表面变形程度增大,塑性变形层深度增加。  相似文献   

16.
Abstract

The proposed work deals with the investigation of magnetorheological based minimum quantity lubrication of graphene oxide (GO) based jojoba oil as bio-lubricant on machinability and tool wear mechanism of turning Monel K500 alloy. Experiments were carried out for dry, flooded, minimum quantity lubrication (MQL) and magnetorheological (MR–MQL) conditions using medium duty lathe. The process parameters include the cutting speed 95, 110, 125?m/min, feed rate 0.050, 0.075, 0.1?mm/rev and depth of cut 0.25, 0.50, 0.75?mm for the output responses such as surface roughness, cutting temperature and tool flank wear. The results indicated that GO-based bio-lubricant MR–MQL reduced coefficient of friction (COF) of 0.051 and wetting angle of 6°, as well as improved machining performance such as cutting temperature of 145?°C, the surface roughness of 0.614?µm, flank wear of 0.18?mm with enhanced lubrication regime under extreme wear conditions.  相似文献   

17.
Nimonic C-263 alloy is extensively used in the fields of aerospace, gas turbine blades, power generators and heat exchangers because of its unique properties. However, the machining of this alloy is difficult due to low thermal conductivity and work hardening characteristics. This paper presents the experimental investigation and analysis of the machining parameters while turning the nimonic C-263 alloy, using whisker reinforced ceramic inserts. The experiments were designed using Taguchi’s experimental design. The parameters considered for the experiments are cutting speed, feed rate and depth of cut. Process performance indicators, viz., the cutting force, tool wear and surface finish were measured. An empirical model has been created for predicting the cutting force, flank wear and surface roughness through response surface methodology (RSM). The desirability function approach has been used for multi response optimization. The influence of the different parameters and their interactions on the cutting force, flank wear and surface roughness are also studied in detail and presented in this study. Based on the cutting force, flank wear and surface roughness, optimized machining conditions were observed in the region of 210 m/min cutting speed and 0.05 mm/rev feed rate and 0.50 mm depth of cut. The results were confirmed by conducting further confirmation tests.  相似文献   

18.
The present study focuses on the development of predictive models of average surface roughness, chip-tool interface temperature, chip reduction coefficient, and average tool flank wear in turning of Ti-6Al-4V alloy. The cutting speed, feed rate, cutting conditions (dry and high-pressure coolant), and turning forces (cutting force and feed force) were the input variables in modeling the first three quality parameters, while in modeling tool wear, the machining time was the only variable. Notably, the machining environment influences the machining performance; yet, very few models exist wherein this variable was considered as input. Herein, soft computing-based modeling techniques such as artificial neural network (ANN) and support vector machines (SVM) were explored for roughness, temperature, and chip coefficient. The prediction capability of the formulated models was compared based on the lowest mean absolute percentage error. For surface roughness and cutting temperature, the ANN and, for chip reduction coefficient, the SVM revealed the lowest error, hence recommended. In addition, empirical models were constructed by using the experimental data of tool wear. The adequacy and good fit of tool wear models were justified by a coefficient of determination value greater than 0.99.  相似文献   

19.
In this paper, we propose a practical texture design on the tool flank face for suppressing chatter vibration and flank adhesion. To avoid chatter vibration during cutting, the process damping phenomena can be utilized, where the tool flank face contacts the surface of a finished workpiece to provide a damping effect. As a new technology for an effective process damping, the tool flank texture-assisted technique has been proposed, and its excellent performance in suppressing chatter vibration has been demonstrated. However, issues that can lead to adhesion and tool damage pose challenges from a practical viewpoint. To overcome such issues, this paper proposes new texture geometries that improve the practical performance: parallel line type, vertical line type, and dot type. The results of a series of finite element analyses showed that the effectiveness of process damping depends on the vibration amplitude and wavelength. The proposed flank textures were fabricated on tool flank faces, and turning tests were carried out. The experimental results showed that the proposed tool is stabler than the conventional untextured tool and that it can more effectively improve the critical cutting speed, reduce the vibration amplitude, and decrease the surface roughness after cutting. With the appropriate design of the texture distance, adhesion and tool damage were hardly observed, and a stable and practical cutting could be realized.  相似文献   

20.
绿色加工中刀具磨损对表面粗糙度影响的研究   总被引:1,自引:0,他引:1  
在切削镍基高温合金材料过程中,由于不稳定因素造成已加工表面粗糙度很难控制,尤其是刀具磨损直接影响着表面粗糙度。通过对冷风油雾、冷风和常温油雾等不同冷却切削条件下刀具磨损和工件表面粗糙度微观形貌的实验,研究了高速切削镍基高温合金材料时,在不同冷却切削条件下刀具磨损对工件表面粗糙度的影响,揭示了用冷风高速切削提高表面加工质量的规律。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号