首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 233 毫秒
1.
考虑静态稳定约束的双馈风电机组无功调节容量   总被引:1,自引:0,他引:1  
针对大规模风电场接入电网带来的电压无功问题,给出了双馈风电机组的功率关系,总结了双馈风电机组固有无功调节容量研究成果。分析了双馈风电机组的功角特性及静态稳定约束对双馈风电机组无功调节容量的影响,简述了电网导则可能对双馈风电机组无功调节容量的约束。在此基础之上,分析了综合考虑机组自身运行约束、静态稳定裕度和电网导则约束的...  相似文献   

2.
电网短路时并网双馈风电机组的特性研究   总被引:7,自引:1,他引:7  
双馈感应风力发电机组(doubly fed induction generator,DFIG)对电网扰动十分灵敏,在电网发生故障期间双馈风电机组与电网的相互影响会造成电网暂态特性以及短路电流分布的显著变化。但是由于双馈感应发电机组与同步发电机组的结构及运行原理均不相同,且目前对其故障过程的研究也比较有限,使得并网双馈风电机组的故障特性还不甚清晰。在以双馈风电机组为主的风电大规模并网背景下,电网的安全稳定运行面临着严峻的挑战。从双馈风电机组的控制策略对其故障特性的影响机制出发,对双馈风电机组在电网发生对称以及不对称短路情况下的短路过程进行深入分析,并进一步推导了适用于不同电网短路情况的并网双馈风电机组短路电流表达式,仿真和算例结果验证了该表达式的正确性。  相似文献   

3.
由于现有风电机组不能响应电网频率的变化,不增加电力系统的转动惯量,大规模风电接入将对电网频率稳定性构成威胁。基于双馈风电机组的控制特性,提出一种实用化的风电参与电网调频的控制方法。采用分段控制的方式,要求风电机组在一定的频率范围内参与调频。基于转子动能控制原理,在电网频率上升到该范围时通过吸收部分转子动能减少风电机组的有功出力,实现风电机组的频率控制。最后在电力系统仿真软件中搭建风电调频控制的电网模型并以大规模地区实际电网为例进行仿真,研究风电参与电网调频的作用。仿真结果表明,风电机组对频率变化具有快速响应能力,可有效改善电网的频率特性,为双馈风电机组安全稳定并网运行提供了可借鉴的理论依据。  相似文献   

4.
姜霞 《电气技术》2012,(6):45-47
随着我国风电大规模发展,装机规模不断扩大,单台风电机组的容量也不断在提高。在目前的兆瓦级的风电电机组中,变频恒速的双馈异步风电机组占有很大的份额,由于双馈式风电机组能够在恒功率因数下有功无功解耦控制,因此双馈式风电机组成为研究的热点。本文从电网的故障角度出发,探讨了双馈感应风电机组的控制策略,在Matlab上搭建了风电机组模型并进行了仿真,分析了在电网故障情况下机组的运行特性。  相似文献   

5.
在电网深度故障情况下,电压源型双馈风电机组控制环节中的惯量和阻尼作用不利于风电机组低压穿越。根据电流源型双馈风电机组的低压穿越策略提出了一种基于模式转换的电压源型双馈风电机组低压穿越控制方法,即在故障期间切换为电流源型控制方式,故障恢复后切换为电压源型控制方式。通过分析双馈风电机组电压源型和电流源型控制结构,提出基于状态变量预同步的柔性模式切换方法,实现了电压源和电流源运行模式的无冲击切换。根据风电机组低压穿越相关规定,制定暂态期间机组冲击电流抑制、有功恢复整定以及动态无功补偿方案,实现了电压源型双馈风电机组在电网深度故障情况下的低压穿越。通过仿真对上述方法的有效性进行了验证。  相似文献   

6.
夏哲辉 《电力学报》2013,(6):454-458
研究了改善双馈风电机组(DFIG)的并网风电场暂态稳定性的措施。目前现存的大部分双馈型变速风电机组并不具备故障穿越能力。在DIgSILENT/PowerFactory14.0中建立了具有暂态无功调节能力的变速风电机组电网侧换流器控制模型以及故障后桨距角控制模型,通过对并网风电场仿真分析验证了模型的有效性。仿真结果表明:当风电场电网侧发生短路故障情况下,双馈风电机组电网侧换流器能够产生一定的无功功率支持电网电压;桨距角控制能够降低风电机组的机械转矩,防止机组超速以及电压失稳。双馈风电机组的故障穿越能力得以实现。  相似文献   

7.
随着风力发电大规模接入内蒙古电网,风电机组的动态特性对电力系统的影响日益严重。基于双馈型风电机组定子磁链,定、转子电流等变量的响应特性方程,深入分析了当发生电网电压对称跌落故障时双馈型风电机组电磁响应特性,并绘制出在电网电压跌落、恢复时刻定子磁链的时域微分方程和运动轨迹,分析结论为:影响双馈型风电机组动态特性变化的主要因素有电压跌落深度、跌落前发电机运行转速以及发电机参数特性等;电压跌落程度越深、跌落前发电机转速越高,其暂态响应越剧烈;发电机结构参数决定指数衰减因子,进而决定了电磁变量动态影响时间。  相似文献   

8.
超速与变桨协调的双馈风电机组频率控制   总被引:5,自引:0,他引:5  
双馈风电机组的有功功率输出无法响应电网频率的变化,并且由于其通常运行在最大功率点跟踪模式下,亦无备用的有功功率支援电网的频率控制。通过提升发电机转子转速和调节桨距角可实现双馈风电机组的减载运行,从而保留部分有功功率作为备用以提升对电网频率的调节能力,但是超速控制和变桨控制在不同工况下,具有一定的工程局限性。为深入挖掘双馈风电机组的调频潜力,提出了一种超速与变桨相协调的调频控制策略。该控制策略根据不同的风速条件,将调频分为低风速、中风速和高风速3种模式,并详细分析了可辨识这3种模式的判据。仿真结果表明,基于文中提出的控制方法,双馈风电机组可以有效提升系统的频率稳定性。  相似文献   

9.
随着风电并网容量的大幅提高,并网导则要求风电机组具备低电压穿越(LVRT)能力。分析了失速型风电机组、双馈型风电机组和全功率型风电机组在电网电压跌落时的暂态过程,据此设计了不同的硬件电路及软件控制策略,并针对LVRT技术难度较大的失速型机组和双馈型机组完成了实验验证。试验结果表明风电机组具有良好的电网适应性,能够满足并网导则的要求。  相似文献   

10.
基于虚拟同步机控制的双馈风电机组预同步并网策略   总被引:1,自引:0,他引:1  
采用虚拟同步机控制的双馈风电机组能提高电网惯量和频率支撑能力,成为实现可再生能源友好并网的有效途径之一。基于虚拟同步机控制的双馈风电机组直接参与电网并网时,由于缺少预同步锁相控制,双馈风电机组定子与电网的电压幅值和初始相位可能存在偏差。针对上述存在的并网问题,提出了一种虚拟同步机控制的双馈风电机组无锁相环预同步控制策略。通过在虚拟同步机外环控制中加入频率相位控制器和幅值预同步控制器,可以控制双馈风电机组并网前定子频率、相位和电压幅值与电网相同,并提出在无功功率-电压环中引入虚拟阻抗,实现了双馈风电机组快速地平滑并网。最后,通过理论分析和仿真结果验证了无锁相环预同步控制方案对虚拟同步机控制的双馈风电机组并网的有效性。  相似文献   

11.
风电场经直流汇集-直流送出的风电全直流输电系统中,直流系统的存在会解耦风电场和受端电网的频率耦合,在传统控制策略下对受端电网频率支撑能力弱。为此,提出一种针对风电全直流输电系统的一次调频变下垂协调控制策略。首先,提出基于Logistic函数的电压-频率变下垂频率传递策略,以直流系统电压为媒介,建立起电网频率与风电场功率的耦合关系。基于该频率传递策略,构建了由受端换流站的变下垂虚拟同步发电机(virtual synchronous generator, VSG)控制、直流升压站的改进双闭环控制及风力发电机的变下垂减载控制组成的风电全直流输电系统一次调频协调控制策略,实现系统无通信传递频率并参与电网一次调频。最后,利用Matlab/Simulink软件搭建风电全直流输电系统仿真模型,在不同工况下进行仿真验证。仿真结果表明,所提控制策略能使风电场在不依赖远端通信的情况下实现对电网的一次调频,同时,有效减小了调频过程中直流电压的波动幅度。  相似文献   

12.
大规模风电场集中并网并经高压输电线输送到负荷中心,当输电线路发生短路故障时,送端会出现短时功率过剩,当故障解除线路恢复正常运行后,系统对送端功率需求又瞬时增大.研究发现已有的双馈风力发电机组(DFIG)基于虚拟惯性控制和下垂控制的附加频率控制策略,对负荷突变引起的频率波动控制效果显著,但对于输电线路短路故障发生到解除全...  相似文献   

13.
双馈风电机组的解耦控制决定了其输出的有功功率无法响应电网的频率变化,当风电的渗透率不断升高时,电网的调频压力不断增大。当风电作为一种新的调频电源并入电网时,为使其更好地为电网调频服务,提出一种基于可变系数的双馈风电机组与同步发电机协调一次调频策略。在不同的运行模式下,定义并整定了双馈风电机组的可变调差系数,使其可以根据当前备用容量决定其调频出力深度;兼顾风电机组的调频备用与经济性,在频率偏差允许范围内通过协调双馈风电机组与同步发电机的调频出力,实现了既能减轻同步发电机的调频压力,又能间接减少风电机组弃风量的双重目标。仿真结果表明,所提出的调频策略可使风电机组的储备功率更加充分地参与调频,有效减轻同步发电机的调频压力。  相似文献   

14.
为了使采用双馈式异步电机的风力发电并网系统具备参与电网一次调频的能力,需要对并网系统开展一次调频性能研究,采用下垂控制方案,解耦有功功率和无功功率,通过控制有功功率输出来动态响应频率波动.针对传统下垂控制在响应电网频率调节过程中,输出功率与参考功率偏差较大引起的控制系统过度调整问题,引入动态下垂系数作为原下垂控制系数负...  相似文献   

15.
针对大规模风电经电网换相型高压直流(LCC-HVDC)送出的送端电网所面临的严峻高频问题,充分挖掘风电潜在调频能力,提出一种风电与直流频率限制器(FLC)参与送端电网调频的协同控制策略。分析直流FLC参与送端电网调频的响应特性,刻画送端电网频率与风电机组功率的下垂关系,设计风电机组变转速与变桨距角相结合的一次调频控制方法。建立包括常规机组一次调频、风电机组下垂控制和直流FLC的频率响应综合模型,结合电网的频率稳定要求,采用灵敏度方法整定风电机组与直流FLC的调频参数,设计风电与直流FLC共同参与的频率协同控制策略。算例仿真结果表明:所提频率协同控制策略可有效降低高频切机、直流过载运行风险,提高送端电网的频率稳定性。  相似文献   

16.
在高渗透风电接入的孤立电力系统中,由于传统调频资源不足,风电大规模波动可能导致系统频率波动,限制新风电的进一步接入。因此,提出一种基于惯性控制和下垂控制的变速型风电机组频率协调控制方法。首先对双馈异步发电机(Doubly Fed Induction Generator,DFIG)、永磁同步发电机(Permanent Magnet Synchronous Generator,PMSG)和有源失速异步发电机(Active-Stall Induction Generator,ASIG)三种类型变速风力发电机组(Variable Speed Wind Turbines, VSWTs)的频率控制特性进行分析。在此基础上,提出基于惯量控制和下垂控制的变速型风机频率协调控制策略,并分析在不同扰动条件下,不同惯性参数与下垂参数对孤立电力系统频率的影响,据此选择合适的控制参数。最后,在随机风速扰动和大扰动条件下对风电机组的稳态与暂态响应进行仿真,验证了所提频率抑制方法的有效性。结果表明,所提方法能显著提高孤立电力系统频率稳定水平。  相似文献   

17.
变速恒频风机通过电力电子设备实现并网,导致机组转速与系统频率不再有耦合关系,无法主动响应系统频率变化。针对风电大规模并网引发的系统调频安全问题,采用优先减载低风速机组的风电场预留备用策略,并结合桨距角控制,实现满足系统备用需求,同时最大限度地储存旋转动能;然后提出了变调频系数的虚拟惯量控制策略,给出了下垂系数的整定方法,以实现风机减载功率充分释放,为系统提供可靠的调频功率支持。在DIgSILENT中建立了系统仿真模型,结果表明:所提策略能够合理分配风机的减载功率,并有效利用备用容量参与系统调频,提升了风机的频率控制能力。  相似文献   

18.
针对风电场参与电网调频导致备用功率冗余的问题,建立了风电场基于健康系数的备用功率分配系统与变下垂系数的备用功率输出的系统。为了分配风机备用功率与控制风机备用功率输出,采用了ARMA风功率预测法对风电场5台风机的历史功率数据进行处理,得到风机的能量密度和功率预测准度,再通过模糊逻辑系统求得风机健康系数,并按照健康系数进行备用功率分配。当频率响应系统检测到频率误差后,控制风机变下垂功率输出系统进行功率补偿,稳定电网频率。仿真结果表明,基于健康系数的功率分配系统与变下垂功率输出系统增加了风电参与电网调频的能力,减少了系统备用功率的冗余。  相似文献   

19.
在频率下垂控制期间,由于减载备用曲线运行点会随转子转速变化而发生偏移,造成双馈风电机组实际贡献的一次调频能力低于设定期望值。为了解决这一问题,首先根据小信号分析理论建立了由双馈风电机组与火电机组构成的分布式系统低阶频率响应模型。然后利用该模型分别推导出评估双馈风电机组实际与期望一次调频能力的量化计算式,提出将设定的下垂系数乘以一个缩小因子后,可使双馈风电机组贡献出期望一次调频能力。最后选用某实际分布式系统对提出的下垂系数修正方法进行了有效性验证,仿真结果表明,当双馈风电机组采用所述方法进行下垂系数修正后,不仅能使系统准稳态频率偏差达到期望水平,还进一步改善了系统最大频率偏差。  相似文献   

20.
针对固定下垂系数控制存在抑制频率波动的阻尼不足的问题,提出一种基于惯性环节的交流励磁抽水蓄能机组变下垂系数调频控制策略。首先,基于交流励磁抽水蓄能机组运行特点,分别建立了可逆水泵水轮机和交流励磁电机的数学模型以及交流励磁抽水蓄能机组控制模型;然后,考虑频率变化率和频率偏差值对系统频率动态调节影响,引入下垂系数-系统频率变化率(R-df/dt)函数,并通过检测电网频率变化和机组转速,获得幅值随频率变化率动态变化的下垂系数,基于此,提出一种基于惯性环节的变下垂系数调频控制策略,并给出了参数整定方法。基于MATLAB/Simulink平台,搭建含交流励磁抽水蓄能机组的电力系统3机仿真模型,并进行系统频率特性的仿真分析。仿真结果表明,所提控制策略可有效提升机组在发电、电动工况下的频率响应能力,提高了电力系统的频率稳定性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号