首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
Zr对Mg-Zn-RE合金显微组织及力学性能的影响   总被引:1,自引:0,他引:1  
采用金相显微镜、扫描电镜、X-射线衍射仪以及电子万能拉伸实验机等设备研究、分析了Zr对Mg—Zn—RE镁合金的显微组织和力学性能的影响。结果表明:Zr元素对合金组织有明显的晶粒细化作用,Zr改善了合金的组织,提高了合金的力学性能。并且当Zr加入量为0.3%时合金的力学性能最佳:抗拉强度达到207MPa,伸长率达到16.9%。Zr的加入使合金断裂方式由准解理断裂向韧性断裂转变。  相似文献   

2.
为了提高医用可降解Mg-2Y-1Zn合金耐腐蚀性能,添加了不同含量的Zr (0,0.2%,0.4%和0.6%,质量分数),并通过XRD、OM、SEM、EDS、析氢和电化学实验等方法研究了Zr含量对合金显微组织和腐蚀行为的影响。结果表明:Mg-2Y-1Zn主要由α-Mg与Mg3Y2Zn3相组成,适量Zr (≤0.4%)的加入没有改变第二相的类型。Zr可以有效细化合金晶粒,优化组织结构,降低腐蚀电流密度,提升合金耐腐蚀性,并使之趋于均匀腐蚀。但当Zr含量达到0.6%时,多余的Zr会析出形成富Zr区,促进电偶腐蚀的发生,使合金耐蚀性有所下降。析氢结果表明,Mg-2Y-1Zn-0.4Zr合金耐腐蚀性最佳。  相似文献   

3.
采用光学显微镜、扫描电镜、X射线衍射仪和拉伸试验机等研究了不同热处理状态下Mg-12Gd-1Zn-0.5Zr合金的物相、显微组织和力学性能.结果 表明:铸态Mg-12Gd-1Zn-0.5Zr合金的组织主要由α-Mg基体、Mg5(Gd,Zn)、Mg5Gd以及Mg10ZnGd(18R-LPSO)相构成.固溶处理后,LPSO...  相似文献   

4.
研究了复合Zr盐添加温度及保温时间对Mg-1%Y合金凝固组织的影响。结果表明:760℃添加0.31%Zr保温20 min后实验合金的细化效果最好,其平均晶粒尺寸可由原来的4100μm降至105μm。研究还表明:Zr盐的加入也在镁熔体中引入了一些Zr的氧化物,这是降低Zr收得率的原因,同时也增加了熔体净化的难度。  相似文献   

5.
采用光学显微镜、X射线衍射、扫描电镜以及硬度试验等手段,研究了固溶和时效处理对Mg-2Er-1Zn-0.18Zr合金组织的影响。结果表明,Mg-2Er-1Zn-0.18Zr铸态合金主要由α-Mg相和X-Mg12ErZn相组成;合金的最佳固溶工艺为540℃×32 h,在该工艺条件下X-Mg12ErZn完全溶入α-Mg基体中,析出大量的W-Mg3Er2Zn3相,且晶粒没有明显长大;随后合金经过180℃的时效处理,与固溶态合金相比,Mg-2Er-1Zn-0.18Zr时效态合金组织变化不明显,仍由α-Mg相和W-Mg3Er2Zn3相组成,合金的显微硬度值变化不大。  相似文献   

6.
7.
微量Ti对Mg-9Al合金显微组织和性能的影响   总被引:9,自引:0,他引:9  
研究了微量Ti对Mg-9Al二元合金铸造显微组织和性能的影响.研究发现,Ti的加入,使得Mg-9Al合金的塑性增加,明显提高了Mg-9Al合金的抗腐蚀性能.分析结果表明,残留Ti弥散分布在合金的基体中,Ti的加入有效降低了Fe的含量,一定程度上“净化”了合金液,抑制了合金凝固时的异质形核,使组织晶粒粗化.实验发现,炉前加入0.12%的Ti(质量分数,下同)时,Mg-9Al合金的晶粒大小由145μm增大到188μm.随着Ti的加入,Mg-9Al铸造组织中β相的形态,由半连续骨骼网状改变为短条状和颗粒状.当炉前加入0.12%的Ti时,Mg-9Al合金的综合性能较佳.  相似文献   

8.
采用X射线衍射仪、光学显微镜、扫描电镜、能谱仪和电子拉伸试验机等设备研究了Nd对Mg-13Gd-0.5Zr合金组织和力学性能的影响,结合错配度理论、位错密度的变化规律讨论了合金晶粒细化的机理,并从细晶强化和析出强化等方面阐述了合金强化机制。研究发现Mg-13Gd-0.5Zr合金的组成相主要有α-Mg、Mg<sub>5</sub>Gd,Nd的加入在合金中形成了新相Mg<sub>41</sub>Nd<sub>5</sub>,并细化了合金晶粒。Nd的加入显著提高了Mg-13Gd-0.5Zr合金的室温和高温力学性能,当Nd的添加量为2%时,合金在室温和高温下的力学性能达到最大值279(室温)、319 MPa(250 ℃),合金力学性能的提高主要归因于Mg<sub>5</sub>Gd和Mg<sub>41</sub>Nd<sub>5</sub>相的析出强化和细晶强化的双重效果。Mg-13Gd-2Nd-0.5Zr合金在不同温度下的断裂方式主要以脆性断裂为主,随着拉伸温度的升高并由脆性断裂向韧性断裂转变。  相似文献   

9.
通过光学金相观察(OM)、扫描电镜观察(SEM)、X-射线衍射分析(XRD)和拉伸试验研究了Gd和Y含量对Mg-Gd-Y-0.5Zr合金显微组织和力学性能的影响.结果表明:随着Gd含量的增加,Mg-Gd-Y-0.5Zr合金的抗拉强度逐渐增大,伸长率逐渐降低.随着Y含量的增加,合金的抗拉强度和伸长率均是先增大后减小.当Gd含量为9%、Y含量为3%时,综合性能最好,抗拉强度达到330~350MPa,伸长率为6%.由于Gd和Y在化合物中相互置换,致使该系列合金的室温非平衡相组成为α(Mg)固溶体、离异共晶化合物Mg5(Y,Gd)、颗粒化合物Mg5(Gd,Y)和Mg24(Y,Gd)5,非平衡结晶的颗粒化合物Mg3(Gd,Y)和Mg2(Y,Gd).  相似文献   

10.
采用快速凝固技术制备Mg-5Zn-1Y-0.6Zr合金,用XRD、SEM、HRTEM、显微硬度测量等分析方法研究其凝固组织和性能.结果表明,合金由α-Mg固溶体、晶界处不连续分布的I(Mg3Zn6Y)准晶相和非晶相组成.根据热传导理论,采用一维傅立叶热传导方程计算了合金的冷却速度.冷却速度的提高使得晶粒细化、成分均匀、非晶相含量增多.硬度(HV)随冷速的提高显著增大,最大值为167.23,是普通凝固合金的2.2倍.  相似文献   

11.
研究了挤压温度对挤压态Mg-2Zn-1Y-0.5Zr生物可降解镁合金动态再结晶、织构和拉伸性能的影响,基于显微组织和腐蚀形态阐述了挤压态合金在模拟体液中的腐蚀机理。结果表明,在440 ℃(E440)下挤压的合金出现双峰结构,具有粗大的未再结晶(unDRXed)晶粒和细小的再结晶(DRXed)晶粒。未再结晶区域的变形晶粒对织构强度的影响最大。460 ℃的挤压合金(E460)具有均匀的再结晶晶粒,晶粒细化后拉伸性能显著改善。同时,均匀的再结晶晶粒会弱化织构强度。E460的样品表现出最佳耐腐蚀性,腐蚀速率为0.669±0.017 mm·a-1。  相似文献   

12.
采用扫描电镜、XRD、析氢及电化学测试等对0.2%Ca、0.2%Y改性的Mg-2Zn-1Al (ZA21)轧制板材的微观组织和腐蚀行为进行了分析。结果表明,Ca和Y细化了晶粒,改变了第二相类型,降低了含Mn相中锰含量。在3.5%NaCl溶液中,优先腐蚀位点位于含Mn相附近的镁基体上,12 h腐蚀速率满足:ZA21 (8.59 mm/a)>ZA21+0.2%Ca (7.17 mm/a)>ZA21+0.2%Y (4.22 mm/a)>ZA21+0.2%Ca+0.2%Y (1.26 mm/a)。耐蚀性提升可归因于晶粒的细化;高Mn相消失,低Mn相和无Mn相生成导致微电偶腐蚀减弱;Mg、 Mg(OH)2、Ca3Al2O6·xH2O、CaY4O7和Y2O3组成的更致密、裂纹更浅、保护性更强的腐蚀产物膜替代了由Mg和Mg(OH)2组成的充满裂纹、保护作用有限的腐蚀产物膜。  相似文献   

13.
为改善医用镁合金微观组织特征与降解行为,采用挤压形变工艺改变医用镁合金的晶粒尺寸特征及析出相/金属间化合物尺寸、分布规律,探究了挤压态医用Mg-2Zn-0.5Gd-1Y-0.5Mn镁合金微观结构特征及降解行为。结果表明:不同的热挤压变形并没有改变Mg-2Zn-0.5Gd-1Y-0.5Mn镁合金中第二相的类型,但改变了第二相的分布和形貌。Mg-2Zn-0.5Gd-1Y-0.5Mn镁合金的成分主为α-Mg和W-Mg3Y2Zn3。电化学测试结果表明,铸态、挤压370℃和挤压390℃合金腐蚀电流密度分别为2.498、3.656、1.012μA·cm-2。这是由于铸态组织中析出相/金属间化合物呈带状分布在基体中,可作为微阴极形成电偶腐蚀位点,加速合金腐蚀速率。合金在370℃挤压时,由于实际温度较低,部分粗化相未能充分溶解到α-Mg基体中,随着析出相数量增加及分布混乱无序,微阴极面积比例增大,进而导致腐蚀速率加剧。而390℃挤压态镁合金的挤压速度快、耗散行为慢,且铸锭与挤压机间摩擦强烈,已发生充分动态再结晶行为...  相似文献   

14.
研究了微量Gd的添加对Mg-8Zn-1Mn-3Sn合金显微组织及性能的影响。结果表明,Mg-8Zn-1Mn-3Sn-xGd主要由α-Mg基体、MgZn2、Mg7Zn3、Mg2Sn相、MgSnGd相组成。MgSnGd相为高温相,在合金凝固过程中最先形成,改变了凝固过程,使晶界处半连续第二相转变为断网状。MgSnGd相与α-Mg基体存在共格位向关系,能作为异质形核核心细化合金晶粒。Mg-8Zn-1Mn-3Sn-0.5Gd合金的综合力学性能最佳,合金力学性能得到显著提高的机制为通过添加Gd元素细化晶粒组织、MgSnGd相钉扎晶界阻碍位错运动以及晶界第二相形貌转变。  相似文献   

15.
采用光学显微镜、X射线衍射仪、X射线荧光法、电子探针显微分析仪、扫描电子显微镜、电子背散射衍射、透射电子显微镜和单轴拉伸测试等对Mg-2Zn-1Mn-x Y (x=0,1,3,5,7,质量分数,%)合金的显微组织和力学性能进行研究。结果表明:随着Y元素的加入,铸态合金的第二相由Mg7Zn3转变为Mg3Zn3Y2,最终转变为Mg12ZnY。Y元素的加入阻碍了动态再结晶的生长过程,使晶粒得到细化,但是进一步增加Y含量不会继续增强晶粒细化程度。挤压态Mg-2Zn-1Mn合金加入Y元素后,塑性呈现出先升高后下降的趋势,这可能是受到了织构取向变化和晶粒粗化的共同影响。此外,合金强度提高主要是由于细晶强化和第二相强化作用。Mg-2Zn-1Mn-7Y合金具有最佳的力学性能,其抗拉伸强度为357 MPa,屈服强度为262 MPa,延伸率为14%。  相似文献   

16.
采用失重法、扫描电子显微镜、光学显微镜研究了热处理对Mg-9Gd-2Y-0.6Zr合金显微组织和耐蚀性的影响。结果表明:合金铸态组织由α-Mg基体和粗大的枝晶β相组成,热处理后,合金中的β相经过溶解再析出的过程,β相由断续网状转变为方块颗粒状;热处理工艺显著提高了合金在Hanks模型中的耐蚀性,且腐蚀产物以Mg(OH)2为主。  相似文献   

17.
研究在Ti-22Nb-6Zr(at%)合金中添加不同含量(质量分数)(0.02%~1.5%)的硼元素,通过粉末烧结法成功制备了性能优良的含硼Ti-22Nb-6Zr记忆合金。结合OM、XRD、SEM分析发现,随着硼元素含量的增加,合金的β相基体中逐渐析出α相和Ti B相,晶粒得到明显细化。通过压缩力学性能测试,发现硼元素对Ti-22Nb-6Zr合金的弹性模量和超弹性影响不大,但硼含量对其屈服强度和抗压强度有显著影响,当硼含量为0.02%~0.1%和1%时,合金展现出较高的抗压强度(1450 MPa以上)和屈服强度(1250 MPa以上)。通过电化学测试,发现当硼含量在0.02%~1%时,合金具有较好的耐腐蚀性,腐蚀电流密度保持在10-6 A·cm~(-2)以内。综合考虑合金的显微组织、力学性能与抗腐蚀性能,得出Ti-22Nb-6Zr记忆合金中适宜的硼添加量为0.02%~0.1%和1%。  相似文献   

18.
张忠明  张俊  马莹  王婷  徐春杰 《铸造技术》2012,33(3):257-260
采用金属型铸造制备Mg-1Mn-1Zn(wt%)三元合金,并将其挤压成棒材.利用光学显微镜、扫描电子显微镜、浸泡试验法等研究了Mg-1Mn-Zn合金的微观组织及其在0.9%NaCl溶液中的腐蚀行为.结果表明,Mg-1Mn-1Zn合金室温组织由树枝状的α-Mg相、非平衡共晶MgZn化合物相和脱溶析出的α-Mn相构成.热挤压使等轴晶粒沿挤压方向被拉长,呈现纤维状组织.Mg-1Mn-1Zn合金的平均腐蚀速率随时间增加逐渐降低.经过264 h浸泡后,挤压态Mg-1Mn-1Zn合金的平均腐蚀速率为0.44 mm/a,比铸态合金的低26.7%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号