首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
滚刀的磨损消耗是全断面岩石隧道掘进机(Tunnel boring machines,TBM)掘进成本的重要组成部分。针对于此,基于中国秦岭和挪威R?ss?ga硬岩隧道的实际工程数据,使用能量分析的方法对滚刀磨损进行了分析研究。提出了滚刀刃单位磨损功和等效磨损函数,通过分析刀盘上不同区域滚刀的运动、受力和磨损机制,建立了基于各刀位滚刀破岩载荷、滚刀安装参数和TBM掘进参数的滚刀刃单位磨损功计算公式。通过求解8.8 m和7.23 m直径TBM的等效磨损函数,并计算相应的滚刀刃单位磨损功,对比分析了不同刀盘、不同地质条件和不同刀盘区域的滚刀磨损,发现:等效磨损函数与滚刀寿命系数(CLI)成反比,等效磨损函数的对称轴位置取决于滚刀布局,对称轴位置的滚刀破岩和磨损状态最理想。揭示了刀盘内侧和外侧区域滚刀高磨损率的原因,提出了增大刀盘内侧滚刀间距、增大30°~40°倾角的边滚刀数目的滚刀布局建议。  相似文献   

2.
为解决硬岩TBM在掘进时滚刀磨损检测难的问题,以岩石断裂力学为理论基础,深入分析了TBM滚刀的破岩机理,并基于Colorado school of mincs(CSM)模型提出了一种新的滚刀磨损预测方法。通过滚刀与岩石相互作用的力学模型,利用刀盘比能预测了滚刀的磨损。结合秦岭隧道工程实例,对滚刀磨损水平进行了量化研究,预测结果与实际情况相符,从而验证了模型的有效性。  相似文献   

3.
聂佳辉  吴志鑫  雷磊  郑靖  周仲荣 《机械》2021,48(12):1-10,19
硬岩掘进机(TBM)主要依赖滚刀-岩石界面的滚压作用进行隧道掘进作业,滚刀刀圈磨损严重、更换频繁,严重影响TBM掘进效率.本文介绍了TBM滚刀破岩原理与典型失效形式;从滚刀材料改性和结构优化角度归纳总结了TBM刀具改性的研究现状,指出单纯的滚刀改性优化对TBM掘进效率的提升作用有限;进而介绍了水射流、超声、激光和微波等外加物理场辅助破岩技术的研究进展;最后,从岩石力学性能化学弱化角度探讨了辅助破岩技术的新思路.  相似文献   

4.
全断面隧道掘进机(TBM)是用于长大隧道建设的关键装备,在川藏铁路等国家重大战略工程中发挥着重要作用。但TBM在硬岩地层施工中仍然面临所需推力大、掘进速度慢、滚刀损耗严重等问题,亟待解决。尝试探索基于滚刀表面结构设计调控刀-岩接触的可行性,设计了一种新型螺旋槽盘形滚刀。使用直线切割破岩实验研究不同贯入度和岩石种类下新型滚刀的破岩性能,并利用颗粒流离散元数值仿真对其破岩机理进行阐释。结果表明,滚刀表面的螺旋槽设计可以显著地降低破岩时切削力,而对生成的岩石碎片总体积无明显影响,因此可以显著减小滚刀做功,降低破岩比能,提高破岩过程的能量利用效率。其机理在于螺旋槽有效地优化了岩石内应力分布,使得同一滚刀前后相邻的刃齿在沟槽下方岩石中形成拉应力区,该部分岩石未与滚刀直接接触形成岩石粉末,而是由拉裂纹互相贯通形成岩石碎片,即减少了岩石粉末数量、缓解了岩石过度破碎程度,最终达到了降低切削载荷和破岩能耗的效果。  相似文献   

5.
在国家不断推进过江、过海等水底隧道及地铁、公路等城市基础建设中,盾构机的需求量逐年提升.其中,滚刀质量制约着工程的进度和施工成本.因此,从滚刀的结构、磨损、拆解及刀圈的研制等方面进行介绍,可为盾构机的研制生产提供参考.  相似文献   

6.
针对盾构机用盘形滚刀在隧道掘进施工中磨损严重的现状,提出一种针对盘形滚刀刀圈磨损的建模方法。基于盘形滚刀的主要磨损形式——磨料磨损,对破岩轨迹和破岩力进行分析,建立了综合塑性去除机制和断裂去除机制的磨损模型,采用粒子群优化算法对两种不同去除机制的占比进行优化。通过有限元分析软件DEFORM建立滚刀磨损仿真模型来模拟实际工况,计算盘形滚刀磨损量。结果表明:模型计算值与实际工程值的误差小于20%,表明磨损模型具有较高的准确性,可用于刀具磨损量计算。  相似文献   

7.
在说明盾构机刀具磨损不良影响的基础上,分别阐述了切刀、滚刀刀具磨损类型,详细阐述了刀具选择、刀具检查、刀具更换、安装滚刀刀圈、检查调整滚刀轴承、检测安装质量等方面的盾构机刀具维修技术,可供隧道盾构施工技术人员、盾构机维修技术人员、盾构机操作人员参考.  相似文献   

8.
<正>全断面岩石掘进机(TBM)用于长大隧道施工中具有快速、安全、高效等钻爆法不可比拟的优势,但TBM一旦遭遇高磨蚀地层,刀盘刀具的更换与修复将花费大量的成本,如穿越秦岭的西康铁路秦岭隧道,用于滚刀的费用高达掘进机施工费用的1/3,因此,TBM刀盘刀具磨损与修复问题已得到了学术界和工程界的高度关注。对于刀盘刀具磨损与修复的问题,国内的  相似文献   

9.
针对全断面岩石隧道掘进机(TBM)工作中刀具选型和刀盘中滚刀布局的问题,采用光滑粒子流(SPH)方法和有限元方法复合建模,对TBM常用的V型和常截面(CCS)盘形滚刀分别在同时加载和顺次加载两种情况下的破岩机理进行数值试验研究,得到了两种不同截面滚刀在不同加载顺序下破岩的动态过程和滚刀侵入过程中岩石裂纹的产生和扩展过程.研究结果表明:V型滚刀顺次加载下的破岩效果好于同时加载,CCS滚刀顺次加载时有利于大块岩屑的形成.  相似文献   

10.
TBM滚刀破岩效率是衡量非开挖工程中滚刀破岩性能的关键指标,而切削温度又是影响TBM滚刀破岩的关键因素。为了深入研究切削温度对滚刀破岩效率的影响,运用ABAQUS有限元软件,模拟分析滚刀在不同温度时的复杂非线性动态响应过程。研究结果表明:在(50~300)℃范围内,随着温度的升高,滚刀和岩石的力学性能发生改变。滚刀受力先减小后增大,岩石破碎体积持续增大,导致滚刀破岩比能先减小后增大。155℃为滚刀理想切削温度,破岩效率最高。研究结果为TBM滚刀切削温度的选择研究提供了一定的理论依据。  相似文献   

11.
Full face rock tunnel boring machine(TBM) has been widely used in hard rock tunnels, however, there are few published theory about cutter-head design, and the design criteria of cutter-head under compl...  相似文献   

12.
At present, the inner cutters of a full face rock tunnel boring machine (TBM) and transition cutter edge angles are designed on the basis of indentation test or linear grooving test. The inner and outer edge angles of disc cutters are characterized as symmetric to each other with respect to the cutter edge plane. This design has some practical defects, such as severe eccentric wear and tipping, etc. In this paper, the current design theory of disc cutter edge angle is analyzed, and the characteristics of the rock-breaking movement of disc cutters are studied. The researching results show that the rotational motion of disc cutters with the cutterhead gives rise to the difference between the interactions of inner rock and outer rock with the contact area of disc cutters, with shearing and extrusion on the inner rock and attrition on the outer rock. The wear of disc cutters at the contact area is unbalanced, among which the wear in the largest normal stress area is most apparent. Therefore, a three-dimensional model theory of rock breaking and an edge angle design theory of transition disc cutter are proposed to overcome the flaws of the currently used TBM cutter heads, such as short life span, camber wearing, tipping. And a corresponding equation is established. With reference to a specific construction case, the edge angle of the transition disc cutter has been designed based on the theory. The application of TBM in some practical project proves that the theory has obvious advantages in enhancing disc cutter life, decreasing replacement frequency, and making economic benefits. The proposed research provides a theoretical basis for the design of TBM three-dimensional disc cutters whose rock-breaking operation time can be effectively increased.  相似文献   

13.
During the last decades, the rapid developments in mining operations and tunnel construction have lead to a rapid increase in the number of excavation machines. In order to achieve the expected benefits of mechanical excavation machines, these machines should be selected in accordance with the characteristics of rocks. Tool abrasion is an important factor in hard rock tunnelling, mining, and it is highly affected by rock abrasivity. There are several methods to identify the rock abrasivity. One of the commonly used abrasion test in rock is the Cerchar abrasivity index (CAI). Before selection and implementation of excavating machines, physical and mechanical properties of the rocks should be determined. It’s known that, physical-mechanical properties of granitic rocks are generally better than those of many rock types although they cause some difficulties (tool wear, lost time, etc.) in excavation and increase the cutter costs. The purpose of the present study is to determine empirical relationships between CAI and physical-mechanical properties of different granitic rocks using regression method. In this study, some laboratory experiments were conducted on samples collected from granite quarries in different parts of Turkey, particularly from the Marmara Region. Firstly, petrographical, mineralogical and physical-mechanical characteristics of the collected granitic rocks were determined. Then, empirical relationships between these properties and CAI were determined using method of regression analysis. According to the results obtained, a strong correlation is found between CAI value, quartz content and quartz size of the granitic rocks. In addition, the uniaxial compressive strength and indirect tensile strength of the studied granitic rocks increase as CAI increases. Surface roughness, waviness and peak number of granitic rocks lead to an increase in CAI. On the contrary, Bohme abrasion resistance increases while CAI decreases.  相似文献   

14.
ABSTRACT

To improve the wear resistance of disc cutters for tunnel boring machines (TBMs), this study is devoted to investigating the effects of rocks and cutter ring properties on the wear behaviors of disc cutters and the matching characteristics between the cutter ring properties and hard rocks. Cutter–rock wear tests were performed and the results show that the cutter ring properties and rock types significantly affect the cutter ring wear. The mass losses of cutter ring samples sliding against different types of hard rock are different and vary with the cutter ring properties because of the discrepancies in loads, vibrations, rock properties, and transition of the wear mechanisms. Finally, matching characteristics between the cutter ring properties and hard rocks are revealed.  相似文献   

15.
基于力学分析的TBM掘进总推力预测模型研究*   总被引:1,自引:1,他引:0  
提出一种基于力学分析的全断面岩石隧道掘进机(Tunnel boring machine,TBM)掘进装备总推力的预测建模方法。在TBM装备掘进过程中,总推力的影响因素多且复杂,主要包括施工地质条件、装备结构特征、装备掘进状态等几类核心参量。从分析装备与地质间相互作用的力学特征入手,通过求解滚刀与岩石接触弧线上岩石单元体的极限应力状态,建立能反映地质、操作等关键参量影响的刀盘破岩力计算表达式。在刀盘载荷分析基础上,补充考虑装备护盾、后续设备等部件上作用的载荷分量,建立TBM装备掘进总推力预测模型,并结合我国两个典型工程案例对所建模型进行分析与验证。进一步引入单位贯入度对应总推力值,作为讨论TBM载荷地质适应性的指标,近似剥离操作参数的影响,分析载荷与地质参数间的内在相关关系。分析结果表明,在各个地质参数中,单轴抗压强度是对掘进总推力起到核心影响的关键地质参数,与单位贯入度对应的总推力间存在近似的线性关系。本工作可对不同地质条件与不同操作状态下,TBM装备掘进总推力进行预估计算,为装备载荷的优化设计与智能控制提供参考依据。  相似文献   

16.
In rock TBM design the disc cutters’ layout design of the full-face rock tunnel boring machine (TBM) is one of the key technologies. However, there are few published papers in literatures for various reasons. In this paper, based on the engineering technical requirements and the corresponding cutter head’s structure design requirements, a nonlinear multi-objective disc cutters’ layout mathematical model with complex constraints and the corresponding multi-stage solution strategy are presented, in which the whole disc cutters’ layout design process is decomposed into the disc cutters’ spacing design and the disc cutters’ plane layout design. A numerical simulation method based on the FEM theory is adopted to simulate the rock chipping process induced by three TBM disc cutters to determine the optimal cutter spacing. And a cooperative coevolutionary genetic algorithm (CCGA) is adopted to solve the disc cutters’ plane layout design problem. Finally, a disc cutters’ layout design instance of the TBM is presented to demonstrate the feasibility and effectiveness of the proposed method. The computational results show that the proposed method can be used to solve the disc cutters’ layout design problem of the TBM and provide various layout schemes within short running times for the engineers to choose from.  相似文献   

17.
Wear Analysis of Disc Cutters of Full Face Rock Tunnel Boring Machine   总被引:1,自引:0,他引:1  
Wear is a major factor of disc cutters’ failure. No current theory offers a standard for the prediction of disc cutter wear yet. In the field the wear prediction method commonly used is based on the excavation length of tunnel boring machine(TBM) to predict the disc cutter wear and its wear law, considering the location number of each disc cutter on the cutterhead(radius for installation); in theory, there is a prediction method of using arc wear coefficient. However, the preceding two methods have their own errors, with their accuracy being 40% or so and largely relying on the technicians’ experience. Therefore, radial wear coefficient, axial wear coefficient and trajectory wear coefficient are defined on the basis of the operating characteristics of TBM. With reference to the installation and characteristics of disc cutters, those coefficients are modified according to penetration, which gives rise to the presentation of comprehensive axial wear coefficient, comprehensive radial wear coefficient and comprehensive trajectory wear coefficient. Calculation and determination of wear coefficients are made with consideration of data from a segment of TBM project(excavation length 173 m). The resulting wear coefficient values, after modification, are adopted to predict the disc cutter wear in the follow-up segment of the TBM project(excavation length of 5621 m). The prediction results show that the disc cutter wear predicted with comprehensive radial wear coefficient and comprehensive trajectory wear coefficient are not only accurate(accuracy 16.12%) but also highly congruous, whereas there is a larger deviation in the prediction with comprehensive axial wear coefficient(accuracy 41%, which is in agreement with the prediction of disc cutters’ life in the field). This paper puts forth a new method concerning prediction of life span and wear of TBM disc cutters as well as timing for replacing disc cutters.  相似文献   

18.
全断面隧道掘进机刀具异常磨损的识别分析   总被引:2,自引:0,他引:2  
针对全断面隧道掘进机(TBM)施工过程中刀具过度磨损或异常磨损的识别问题,在分析TBM掘进效率影响因素和进行掘进状况无监督模式识别的基础上,利用现场掘进数据,得到场切深指数fFRI和切割系数C在不同掘进状况下的相互影响规律,据此提出以两者作为TBM刀具异常磨损的二维特征识别参量,确定了此空间中的刀具异常磨损决策阈值。TBM刀具磨损的预测和异常磨损识别方法的确定,对于保障TBM的安全掘进以及提高其利用率和经济性具有重要意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号