首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 164 毫秒
1.
卢云帆  邢丽坤  张梦龙  郭敏 《电源技术》2022,(10):1151-1155
锂电池荷电状态(SOC)的精确估计是电动汽车安全行驶的保障。为了降低实际复杂工况下电池模型不契合实际电池参数时变特性造成的误差,采用无迹卡尔曼滤波算法(UKF)对电池模型进行在线参数辨识,再联合自适应无迹卡尔曼滤波算法(AUKF)估计锂电池SOC,将时变参数反馈到SOC估计的模型中,提高SOC估计精度和对各工况适应性,UDDS工况下通过与离线扩展卡尔曼滤波算法(EKF)、在线双扩展卡尔曼滤波算法(DEKF)进行比较分析,实验结果验证了UKF-AUKF的精确性和鲁棒性。  相似文献   

2.
针对扩展卡尔曼滤波算法中近似线性化处理及电池实际使用中出现的容量衰减引起的电池状态估算误差,提出基于容量修正的无迹卡尔曼滤波算法完成电池荷电状态估算,实现电池全寿命状态监测。通过分析锂电池工作特性和建立二阶RC等效电路模型,使用在线参数辨识法实现电池动态参数计算,为电池荷电状态估算奠定基础。结合电池实际工作中容量衰减特性,利用容量修正和无迹卡尔曼滤波算法完成电池荷电状态的在线实时估算,提高了估算精度。在恒流放电工况下,利用MATLAB仿真验证,表明无迹卡尔曼滤波算法的估算精度和鲁棒性优于扩展卡尔曼滤波算法,估算误差在3.5%以内。引入容量修正后,对老化情况下容量衰减的电池进行荷电状态估算,相比容量未修正时最大估算误差减小了3%,满足电池全寿命状态估算使用需求。  相似文献   

3.
蓄电池的荷电状态(state of charge,SOC)是表征电池当前剩余电量的重要参数。提出一种基于神经网络和主从式自适应无迹卡尔曼滤波(masterslaveadaptiveunscented Kalmanfilter,MS-UKF)算法的SOC估计方法。首先,建立蓄电池的戴维南(Thevenin)二阶模型,针对开路电压与电池SOC之间的非线性关系,采用神经网络模型代替多项式模型,以提高拟合精度。根据实时测量数据,基于最小二乘法在线确定电池模型的参数。针对传统的扩展卡尔曼滤波(extendedKalmanfilter,EKF)和无迹卡尔曼滤波(unscented Kalman filter,UKF)方法存在噪声方差固定,会产生误差造成估计精度不高的问题,采用MS-AUKF算法。该算法的主滤波器用来估计系统状态,辅助滤波器用来估计噪声方差矩阵。算法每次迭代时更新系统模型的噪声方差,克服了传统卡尔曼滤波算法中,噪声方差初值人为设定可能导致滤波发散的缺点。仿真结果表明,相比于EKF、UKF算法,MSAUKF在估计电池SOC时具有更高的精确度和收敛速度。  相似文献   

4.
该文为锂电池的健康和荷电状态监测及估计,提出一种全新的状态空间模型。该模型在利用电池等效电路描述电池特性之外,还为开路电压和荷电状态关系存在的滞回现象提供了描述手段。此外,通过引入电池内阻作为状态变量,并将其与从电池容量和内阻角度定义的电池健康状态进行关联,从而为通过更新内阻而实时更新电池的当前容量提供途径,则新模型可自适应电池的老化而一直保持高的描述精度。分析表明:建立的模型可根据电池给定的健康状态要求来对电池健康和荷电状态进行估计,特别是它能针对不同状态下电池的内阻变化来实时调整模型内阻,进而更新电池的实时容量,来提高模型的实时描述精度。实验结果验证了提出模型的有效性。  相似文献   

5.
刘楠  叶望博  李明  吕甜  张雪霞 《电源技术》2021,45(2):173-176,239
对电池管理系统而言,锂电池荷电状态(SOC)的估算相当重要.针对此问题,从锂电池的工作特性分析出发,通过实验及仿真验证,选定一阶Thenevin作为钛酸锂电池的等效模型.利用平方根球型无迹卡尔曼滤波方法,引入噪声自适应因子,对锂电池SOC进行准确估算,极好地提高了收敛速度,缩短了估算时间,并且具有良好的精度.该算法的估...  相似文献   

6.
锂电池荷电状态(SOC)估计是电池管理系统中不可或缺的重要组成部分。锂电池传统整数阶等效电路模型未充分考虑其内部电化学反应现象,故将导致SOC估计结果偏离真实状态。文中以磷酸铁锂电池单体为研究对象,提出一种基于分数阶阻抗模型的锂电池SOC估计方法。该方法利用分数阶元件表征锂电池内部固液界面的输运现象和极化效应,基于分数阶微分理论建立状态转移方程和系统量测方程,并针对锂电池高度非线性的工作特性,利用无迹变换逼近原始状态分布,运用分数阶无迹卡尔曼滤波算法估计锂电池SOC。实验结果表明,分数阶阻抗模型能准确描述锂电池工作特性,所提算法在估计精度和跟踪速度上有一定提高。  相似文献   

7.
为了提高动力锂电池的使用效能和整车性能,需要准确估计动力锂电池的荷电状态(SOC),在研究分析常用SOC估计方法的基础上,根据开路电压法和卡尔曼滤波算法的特性,引入T-S模糊模型,建立了基于模糊优化决策的锂电池SOC估计方法,通过仿真验证,可有效提高锂电池SOC估计的精度。  相似文献   

8.
锂电池荷电状态(SOC)的估计在整个能量管理系统中起重要作用,快速准确的估计出电池的荷电状态是能量管理系统的关键技术。针对锂电池内部复杂的化学反应,以二阶RC等效模型为基础,建立数学关系,应用含遗忘因子的递推最小二乘法求其模型参数。采用安时积累法、开路电压法和扩展卡尔曼滤波法结合的方法来估计锂离子电池的荷电状态。通过仿真得出的SOC值与实际SOC值比较可以得出此方法具有很好的精度,效果良好,可以作为SOC实时估计的一种手段。  相似文献   

9.
锂电池的SOC(荷电状态)准确估计是电池管理系统及其控制的基础。现有扩展卡尔曼滤波、无迹卡尔曼滤波等方法需计算高维雅克比矩阵或协方差矩阵,对计算能力要求较高。结合数据同化和集合预报的思想,提出基于联合EnKF(集合卡尔曼滤波)的锂电池SOC估计方法。该方法利用集合的统计特征来表征状态变量,避免了高维矩阵的运算,对SOC和模型参数进行联合估计,可提高算法速度和精度。建立了锂电池等效电路模型并辨识了模型初始参数,得到了开路电压曲线。在EnKF的基础上,针对充放电过程中模型参数的变化,提出了基于联合EnKF的SOC估计方法,可在计算过程中联合估计SOC和模型参数。实验结果表明,所提方法可准确高效地估计锂电池的SOC。  相似文献   

10.
为保证锂离子电池的安全健康使用,需要对锂离子的荷电状态进行实时估计,但由于电池内部复杂的电化学特性,且在辨识过程中辨识结果受温度、荷电状态和充放电倍率等非线性因素影响较大,实现准确的状态估计较为困难。文中首先基于二阶RC等效电路研究倍率充放电对锂电池的影响,另外为保证所建电池模型兼具较高精度和较好的实时性,根据最小二乘法对混合脉冲功率特性测试实验数据完成不同荷电状态下的数据拟合、参数辨识等工作,并依据扩展卡尔曼滤波完成对电池荷电状态的状态估计,并验证扩展卡尔曼滤波具备可实施性;最后搭建Simulink锂电池仿真模型并输出对比响应电压波形。实验结果表明该实验方法的有效性,输出电压与实验所得的电压变化趋势基本一致,为锂离子电池的管理系统提供了一定的参考依据。  相似文献   

11.
为提高锂离子电池荷电状态(state of charge,SOC)值和健康状态(state of health,SOH)值的估算精度,基于二阶戴维南等效电池模型,提出双自适应无迹卡尔曼滤波(double adaptive unscented Kalman filter,DAUKF)算法。通过AUKF1和AUKF2这2个滤波器,可以同时计算出电池的SOC值和电池内阻,内阻既可以更新电池的模型参数,又可依靠函数关系,估算出电池的SOH值。仿真结果表明,DAUKF能够准确估算出SOC值和SOH值,精度保持在2%以内,由此验证了该方法的可行性和精确性。  相似文献   

12.
徐万  谢长君  邓坚  黄亮 《电池》2020,(4):333-337
扩展卡尔曼滤波(EKF)和无迹卡尔曼滤波(UKF)算法估算电池荷电状态(SOC)依赖等效模型参数的准确性,估算精度低。容积卡尔曼滤波(CKF)算法的滤波性能良好。利用自适应CKF(ACKF)算法估算电池SOC,自适应调节过程噪声协方差和量测噪声协方差,提高估算SOC的精度。对锂离子电池建立二阶RC等效电路模型,在不同工况下进行充放电,用卡尔曼滤波算法在线辨识等效模型的参数,ACKF算法实时估算SOC。ACKF算法估算SOC的鲁棒性较强,精度在1.5%以内。  相似文献   

13.
建立的锂电池非线性系统中存在不确定的观测模型误差时,会影响滤波器估计的精度和稳定性,严重时还会导致估计结果发散。针对这一问题,基于变分贝叶斯自适应滤波方法,提出了一种鲁棒UKF算法。该算法构建虚拟观测噪声用来补偿观测模型误差,并采用逆Wishart分布对虚拟观测噪声协方差建模。在变分迭代过程中,实现对系统状态和虚拟观测噪声协方差的联合后验概率估计,使估计结果自适应地逼近到真实分布。利用无迹卡尔曼滤波对系统状态进行更新。结合锰酸钾锂电池非线性模型进行仿真实验表明,该算法估计锂电池荷电状态具有很好的精度、跟踪速度以及鲁棒性。  相似文献   

14.
程泽  李智  孙幸勉 《电源学报》2019,17(1):87-94
针对锂离子电池在电流状态突然变化时产生的松弛现象和滞回现象,在分析了电池等效电路模型的基础上,引入线性滤波器和滞回模块,建立了电池的自校正模型。通过恒流脉冲实验和动态应力工况测试验证自校正模型在对电池电压特性跟随的可靠性,并在该模型的基础上使用有限差分扩展卡尔曼滤波FDEKF(finite difference extended Kalman filter)算法实现了电池的荷电状态SOC(state of charge)估计。实验分析表明,自校正模型能较好地体现电池的动态特性,并使SOC估计保持很好的精度。  相似文献   

15.
针对传统无迹卡尔曼滤波(unscented Kalman filter,UKF)算法估计电池SOC时,在未知的干扰噪声条件下滤波精度较低和稳定性较差等问题,基于等效的二阶RC电路模型,提出自适应无迹卡尔曼滤波(adaptive unscented Kalman filter,AUKF)算法.在模型参数辨识的基础上,构建...  相似文献   

16.
在电动汽车能量管理控制策略和电池管理系统研究中,电池荷电状态(State of charge,SOC)的准确估算一直是重点和难点。基于磷酸铁锂动力电池的工作原理和充放电特性试验,利用MATLAB软件拟合获得不同放电电流下的库仑效率和开路电压与SOC的关系。并采用虚拟仪器LabVIEW与相关硬件,实时采集动力电池相关数据,将SOC估算的安时法与开路电压法相结合,实现了对动力电池SOC的实时估算与高精度显示,提高了电池SOC研发系统的实用性与准确性。  相似文献   

17.
郭佑民  戴银娟  付石磊 《电池》2020,(2):127-130
针对城轨车辆储能用超级电容器的特点,建立等效电路模型。通过遗忘因子最小二乘算法识别模型参数,采用自适应无迹卡尔曼滤波(AUKF)算法估计超级电容器的荷电状态(SOC)。相比传统的卡尔曼滤波(KF)算法,AUKF算法循环迭代运算超级电容器的参数和SOC,可提高估算的准确度。利用混合脉冲功率特性(HPPC)实验,验证算法的可行性与准确性。KF算法的误差较大,最大误差为6%,平均误差为3%;AUKF算法的结果精度较高,平均误差约为1.5%。  相似文献   

18.
Abstract

State of charge (SOC) is an important indicator for guiding the charging-discharging operation of lithium-ion batteries. In this article, the equivalent circuit model of lithium-ion battery and the variable forgetting factor (VFF) least squares model identification method are proposed. This parameter identification method can improve the accuracy of the lithium-ion battery model, thereby ensuring the accuracy of the SOC estimation. Furthermore, based on the lithium-ion battery model, the adaptive unscented Kalman filter (AUKF) algorithm is proposed to estimate SOC of lithium-ion batteries. Experimental results show that the AUKF algorithm is good robustness, fast convergence, practicality and small error in SOC estimation of lithium-ion batteries. In conclusion, the VFF least squares model identification method and the AUKF algorithm are promising engineering application method.  相似文献   

19.
精确估计锂离子电池荷电状态(SOC)是电池管理系统的关键技术之一,直接影响着动力锂电池组的使用效率和安全 性。 锂离子电池特性复杂,其 SOC 无法直接测量,且受电流、温度等因素的影响较大。 为此,提出了一种基于门控循环单元 (GRU)神经网络与无迹卡尔曼滤波(UKF)相结合的组合算法。 该方法利用 GRU 网络获得可测量的电流、电压、温度与锂电池 SOC 之间的非线性关系,并以此作为 UKF 的观测方程。 然后,通过 UKF 估计 SOC 值以提高算法的估计精度。 实验结果表明, 在不同温度以及不同的工况下,本文所提方法的均方根误差(RMSE)和平均绝对误差(MAE)分别小于 0. 51%和 0. 46%,均能提 高 SOC 的估计精度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号