首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为解决青龙煤矿11615回采工作面上隅角瓦斯浓度超限难题,结合该工作面实际瓦斯赋存情况,采用高位定向长钻孔瓦斯抽采技术方法开展瓦斯抽采。对比了瓦斯抽采效果与钻孔距回风巷距离远近的关系,研究了瓦斯抽采效果与回采里程的关系,总结了高位定向长钻孔的瓦斯抽采规律。研究结果表明:回采过程中,通过高位定向长钻孔抽采采空区上覆岩层瓦斯,回采工作面上隅角瓦斯浓度降低到0.25~0.35%,解决了该采空区上隅角瓦斯浓度超限问题;钻孔距回风巷距离为40 m时,抽采瓦斯浓度基本稳定在18.5%左右,抽采效果最佳;随着回采里程的增加,钻孔抽采效果呈上升趋势,但在抽采末期有所下降;说明高位定向长钻孔对降低采空区及回采工作面上隅角瓦斯发挥了一定作用,提高了回采过程中瓦斯治理效率。  相似文献   

2.
回采工作面上隅角瓦斯超限是瓦斯治理工作的重点。本文在对南凹寺矿30405上分层回采工作面采空区顶板岩层三带高度进行计算的基础上,对回风巷高位钻孔布置方案进行优化设计,将高位钻孔布置在采空区顶板裂隙区内。抽采钻孔在近一个月内能保持较高的抽采浓度和抽采纯量,能有效截流和较长时间的抽采采空区瓦斯,解决了高瓦斯矿井综采工作面上隅区瓦斯浓度超限问题。  相似文献   

3.
为解决高瓦斯矿井采空区上隅角瓦斯超限问题,基于回采工作面回采过程中顶板破坏规律,结合顶板高位定向钻孔抽采采空区和上隅角瓦斯治理技术原理,提出采空区顶板高位定向钻孔差异化布置。通过数值模拟寺河矿E5302工作面顶板破坏规律,得到距回风侧煤壁90 m范围内不同位置张拉破坏高度关系式,为高位定向钻孔在回采面回风侧横向一定范围内差异化精准布置提供参考依据,确定采空区顶板高位定向钻孔布置层位为距顶板垂直距离30~45 m;现场试验期间,差异化布置顶板高位定向钻孔抽采瓦斯浓度高、流量稳定,整体抽采效果较好,有效抽采瓦斯时间达50 d以上,在抽采稳定时期钻场钻孔平均纯瓦斯抽采量达15.5 m~3/min,上隅角瓦斯体积分数控制在0.44%左右,保障了矿井回采期间安全。  相似文献   

4.
碾焉煤业综采工作面采用"U"型通风,回采过程中上隅角风流不畅,为解决上隅角瓦斯浓度超限现象频发的问题,设计在4202工作面采用高位大直径定向长钻孔抽采采空区瓦斯,通过理论分析计算初步确定定向钻孔的布置层位,数值模拟研究确定最佳的抽采负压为15 kPa,定向钻孔距离煤层底板的最佳距离20 m,在4202工作面回风绕道布置钻场进行高位大直径定向钻孔的应用,应用期间钻孔抽采瓦斯平均浓度为18%,上隅角瓦斯稳定在0.4%左右,对于上隅角瓦斯治理及抽采效果良好。  相似文献   

5.
为了解决综采工作面采空区瓦斯向回采空间和回风隅角涌出而造成的局部瓦斯积聚和超限问题,沿煤层顶板裂隙发育带施工走向高位抽采巷,对采空区瓦斯进行抽采。通过对走向高位抽采巷抽采采空区瓦斯效果和对回风流、回风隅角瓦斯浓度的影响分析,得出走向高位抽采巷末端进入采空区40 m左右时,抽采效果达到峰值,并基本稳定,解决了综采工作面生产期间回风流、回风隅角瓦斯治理难题,杜绝了瓦斯超限事故。  相似文献   

6.
为解决15103工作面回采期间瓦斯含量高的问题,采用Fluent数值模拟软件分别进行未采用抽采措施和高位钻孔抽采后采空区瓦斯运移规律的分析,得出高位钻孔抽采后采空区内的瓦斯含量呈现出逐渐降低的现象,上隅角瓦斯大幅降低,高位钻孔能够有效治理采空区瓦斯,基于数值模拟结果,具体进行工作面高位抽采钻孔各项参数的设计,并分别在高位钻孔抽采前后进行上隅角和回风巷内瓦斯浓度的测试。结果表明:高位钻孔抽采后,上隅角和回风巷的瓦斯浓度分别稳定在0.2%~0.68%和0.25%~0.8%,无瓦斯超限现象出现,为工作面的安全回采提供了保障。  相似文献   

7.
上隅角瓦斯超限一直是综采工作面瓦斯治理的重点,顶板裂隙带是瓦斯的富集区,将高位钻孔布置在采空区顶板裂隙区内进行瓦斯抽采能有效解决上隅角瓦斯超限问题。在对古书院煤矿15#煤层顶板岩层采动裂隙形成"三带"高度进行研究的基础上,对回风巷高位钻孔布置方案进行优化设计,解决了15#煤层回采工作面上隅区瓦斯浓度超限问题。  相似文献   

8.
针对成庄矿四盘区4321工作面煤体瓦斯含量高,高强度开采易造成回风隅角和回风巷瓦斯超限等问题,提出了采取普通顺层钻孔预抽、定向顺层钻孔预抽、底抽巷穿层钻孔预抽、采空区埋管抽采、长距离高位钻孔抽采相结合的综合瓦斯治理方法及工艺,并对其抽采效果进行了考察、分析。研究结果表明:工作面回采期间的风排瓦斯量、抽采瓦斯量、绝对瓦斯涌出量、回风巷瓦斯浓度、上隅角瓦斯浓度等均随着工作面推进度的变化而变化。工作面瓦斯抽采量占绝对瓦斯涌出量的78%,上隅角最大瓦斯浓度为0.7%,回风巷最大瓦斯浓度为0.55%。说明采取的瓦斯治理措施有效,可解决高瓦斯大采高工作面的瓦斯涌出问题。  相似文献   

9.
针对某矿3304工作面瓦斯涌出量大的问题,介绍了高位钻孔抽采的钻孔布置及施工参数,分析了钻孔对采空区瓦斯抽采效果。实践表明:高位钻孔抽采浓度高,抽采纯量大,抽采瓦斯效果好,有效解决了工作面上隅角及回风巷瓦斯超限的问题,保证工作面的安全生产。  相似文献   

10.
为解决上隅角瓦斯超限问题,利用定向钻进技术轨迹可控、覆盖区域广等优越性,布置顶板高位定向钻孔抽采采空区瓦斯;通过数值模拟寺河矿E5302工作面工作面顶板破坏规律,得到距回风侧75 m范围内不同位置张拉破坏高度关系式,确定采空区顶板高位定向钻孔布置层位为距顶板垂直距离30~45 m;结合现场试验,回采期间上隅角瓦斯浓度控制在0.4%左右,保障了回采期间安全。  相似文献   

11.
《煤》2017,(7):19-21
针对漳村煤矿2503工作面回采过程中上隅角超限问题,通过对工作面上覆岩层垮落特征分析,研究在回风巷顶板打设高位裂隙钻孔抽采采空区裂隙带瓦斯进行治理。回采过程中钻孔瓦斯抽采量随工作面推进先增大后减小,上隅角和回风流瓦斯涌出量逐渐降低,工作面上隅角瓦斯未出现超限现象。  相似文献   

12.
魏家地矿北1103工作面在回采过程中,采空区瓦斯会大量涌入工作面造成上隅角和回风巷瓦斯超限。为治理采空区瓦斯,计算钻孔参数并设计布置方案,在北1103工作面回风巷先后开掘1号、2号钻场,利用高位瓦斯钻孔接续进行瓦斯抽采作业并监测分析上隅角及回风巷瓦斯变化情况。治理结果显示,1号钻场抽采期间,工作面上隅角平均瓦斯浓度为0.48%,回风巷平均瓦斯浓度为0.25%;2号钻场抽采期间,工作面上隅角平均瓦斯浓度为0.37%,回风巷瓦斯浓度为0.22%;平均瓦斯浓度均在0.5%以下,未发生瓦斯超限现象,瓦斯抽采效果显著,治理方法与设计可为相关工程项目提供参考。  相似文献   

13.
针对开滦钱家营矿1376工作面上隅角、采空区、回风巷瓦斯超限问题,采用预埋管、高位钻孔抽放以及气动风机吹上隅角的方法,有效预防采面及上隅角瓦斯超限的发生,确保了回采工作面的安全生产。  相似文献   

14.
张锋 《煤炭技术》2023,(2):131-134
为了研究综放工作面上隅角瓦斯超限原因及提高工作面上隅角瓦斯超限治理效果,以保德煤矿81505工作面为研究对象,结合工作面回采工艺参数,提出了偏Y型通风方式,利用有限元软件FLUENT模拟研究了工作面采空区瓦斯流场分布特点,在此基础上提出了大直径水平钻孔抽采采空区瓦斯工艺:即在备采工作面上顺槽通过施工水平钻孔接通采空区,进行采空区瓦斯抽采。研究结果表明:在保证工作面足够配风量条件下,大直径水平钻孔瓦斯抽采浓度3.2%~10.2%,抽采量5.4~23.6 m3/min,工作面上隅角瓦斯浓度不超过0.58%,回风巷瓦斯浓度不超过0.49%。确保了工作面安全高效生产。  相似文献   

15.
某矿3207工作面进入高瓦斯开采区,上隅角和瓦斯尾巷瓦斯超限严重,平均每天超限3次,以采空区瓦斯涌出为主,约占涌出总量的65.1%(回采初期)和78%(正常回采期间)。因此,该工作面的瓦斯治理应以采空区瓦斯为主要对象。采空区瓦斯抽采的常见方法主要有高位巷(瓦斯尾巷)、采空区埋管、采空区插管、顶板高位钻孔(走向和倾向)等,通过对比分析,并结合工作面实际情况确定采用走向长短钻孔抽采采空区瓦斯,取得明显效果,上隅角瓦斯浓度降低7.5%,上隅角、回风巷、瓦斯尾巷的瓦斯超限次数分别降低65.3%,49.3%和18.2%。  相似文献   

16.
针对高瓦斯矿井U型通风方式回采工作面上隅角瓦斯易超限问题,采用数值模拟与现场试验相结合的研究方法,对采空区立体化瓦斯抽采措施的工作面上隅角瓦斯治理效果进行研究。以晋煤集团成庄煤矿4312综放工作面为研究对象,通过数值模拟优选出高效瓦斯抽采措施,建立了"高位钻孔+采空区联络巷埋管"采空区立体化瓦斯抽采体系,通过数值模拟手段预测得到采取该抽采措施体系后工作面上隅角瓦斯浓度最大值降低至0. 42%,该抽采措施体系的现场应用中工作面上隅角实测瓦斯浓度处于0. 30%~0. 45%之间,现场应用效果验证了数值模拟结果的正确性。研究结果表明,采空区瓦斯立体化高效抽采措施能够治理高瓦斯矿井回采工作面U型通风方式下上隅角瓦斯超限难题。  相似文献   

17.
李江平 《江西煤炭科技》2022,(1):177-179,182
针对回采工作面回风隅角瓦斯浓度高影响安全生产问题,设计采用顶板高位定向钻孔对采空区瓦斯进行抽采,通过分析23051工作面顶板三带分布及采空区瓦斯分布流场情况,合理设计顶板高位定向钻孔层位、孔径及深度,采用顶板高位定向钻孔进行采空区瓦斯抽采后,回风隅角最高瓦斯浓度由0.7%下降至0.4%,顶板高位定向钻孔抽采瓦斯量占工作...  相似文献   

18.
采空区顶板高位走向长钻孔高效抽采瓦斯机理研究   总被引:4,自引:0,他引:4  
为了提高采空区顶板高位走向长钻孔瓦斯抽采效率,消除工作面上隅角瓦斯超限事故,以山西华晋吉宁煤业有限责任公司2102综采工作面为研究对象,采用数值模拟、理论分析与现场试验相结合的方法,利用3DEC软件模拟计算2102综采工作面回采期间采空区顶板裂隙场演化过程,根据裂隙场、应力场和应变场分布模拟结果在沿工作面推进方向上划分采空区顶板裂隙加强区范围与压实区范围,工作面推进期间煤层顶板在时间上先后经历裂隙加强区和重新压实区,处于裂隙加强区的钻孔部分为钻孔高效抽采作用区域,钻孔高效抽采段长度与钻孔高效抽采段裂隙发育程度共同决定高位走向长钻孔抽采效率,揭示了采空区顶板高位走向长钻孔高效抽采瓦斯作用机制;在此基础上,在采空区顶板裂隙带高度范围内布置多个高位试验钻孔,进行钻孔瓦斯抽采效果考察,研究结果表明:在保证高位钻孔布置于回风巷内侧顶板裂隙带前提下,最佳布孔层位为距煤层底板60 m左右,同时在高位试验钻孔作用下,上隅角瓦斯体积分数最大值由1.1%降低至0.6%,说明根据回风巷内侧采空区顶板裂隙带高度范围,布置高位走向长钻孔能显著降低上隅角瓦斯浓度。  相似文献   

19.
根据象山矿井5#煤层煤系地层赋存条件,分析了采空区瓦斯富集区层位,设计施工5个顶板高位定向长钻孔进行采空区瓦斯抽采治理。现场抽采结果表明:顶板高位定向长钻孔布置层位高度20~22m,水平内错距离0~45m较为合理;通过进行5#煤层顶板定向长钻孔抽采技术应用,工作面日产量大幅提升,而工作面上隅角瓦斯浓度由此前长期维持在0.7%降至0.4%左右,有效遏制了上隅角瓦斯超限事故,实现了取消高位裂隙钻孔和采空区埋管抽采的目标。  相似文献   

20.
张聪华 《煤》2020,29(5):36-38
针对马兰矿10706工作面上隅角瓦斯浓度高、经常出现瓦斯超限现象,提出采用大直径钻孔抽采采空区瓦斯,通过数值模拟得出大直径钻孔钻孔间距为30 m时,抽采效果较好。现场应用表明:抽采技术实施后,工作面、回风巷及上隅角区域的瓦斯浓度均处于合理范围内,抽采效果良好,为工作面的安全回采提供了保障。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号