首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this study, the regioregular poly (3-hexyl thiophene) (rr-P3HT) based piezoelectric sensors were developed and evaluated to detect alcoholic volatile organic compounds (VOCs) associated with spoiled and Salmonella typhimurium contaminated packaged beef headspace. The drop coating technique was used to deposit thin films of rr-P3HT on both the sides of quartz crystal microbalance (QCM) electrode. The QCM polymer sensors were found to provide repeatable and reproducible sensor response to alcohol VOCs with a fast recovery (<2 min) at room temperature (25 °C). The principal component analysis on the sensors sensitivities was performed to discriminate the sensed alcohol VOCs, namely: 3-methyl-1-butanol from 1-hexanol. The QCM polymer sensors demonstrated selective response to low concentration of 3-methyl-1-butanol (average estimated lowest detection limit (LDL): 4.35 ppm) and to 1-hexanol (average estimated LDL: 3.20 ppm). The 30 days storage study performed on QCM sensors showed identical sensitivity responses for sensing 3-methyl-1-butanol and 1-hexanol at low concentrations.  相似文献   

2.
The Langmuir-Blodgett (LB) technique was employed to produce thin LB films using an amphiphilic calix-4-resorcinarene onto different substrates such as quartz, gold coated glass and quartz crystals. The characteristics of the calix LB films are assessed by UV-visible, quartz crystal microbalance (QCM) and surface plasmon resonance (SPR) measurements. UV-vis and QCM measurements indicated that this material deposited very well onto the solid substrates with a transfer ratio of >0.95. Using SPR data, the thickness and refractive index of this LB film are determined to be 1.14 nm/deposited layer and 1.6 respectively. The sensing application of calixarene LB films towards volatile organic vapors such as chloroform, benzene, toluene and ethanol vapors is studied by the SPR technique. The response of this LB film to saturated chloroform vapor is much larger than for the other vapors. The response is fast and fully recoverable. It can be proposed that this sensing material deposited onto gold coated glass substrates has a good sensitivity and selectivity for chloroform vapor. This material may also find potential applications in the development of room temperature organic vapor sensing devices.  相似文献   

3.
In order to develop the fully integrated portable surface plasmon resonance (SPR) system for detection of explosives, the amplification strategy of SPR signal was investigated. Indirect competitive inhibition method allowed the middle-sized SPR sensor to detect trinitrotoluene (TNT) at ppt level. However, this enhanced SPR signal was not high enough to detect TNT at ppt level by a miniaturized SPR sensor. Therefore, localized surface plasmon resonance (LSPR) effect using Au nanoparticle as further signal amplification approach was used. The amplification method of indirect competitive inhibition and LSPR were combined together for fabrication of the immunosurface using Au nanoparticle. TNT detectable range of this immunosurface was from 10 ppt (10 pg/ml) to 100 ppb (100 ng/ml), which was almost comparable to that without Au nanoparticle. The observed resonance angle change due to binding monoclonal TNT antibody (M-TNT Ab) with the immunosurface modified with Au nanoparticle was amplified to four times higher than that in absence of Au nanoparticle.  相似文献   

4.
LVQ聚类算法在爆炸物THz光谱识别中的应用   总被引:1,自引:0,他引:1       下载免费PDF全文
运用THz光谱特性进行爆炸物的识别,是现代检测技术研究的一个热点。由于直接对原始数据进行聚类的识别率并不理想,首先对实验样本的THz频域光谱数据曲线进行二阶导数变换,得到了更能表现数据变化趋势和峰值的特征曲线,然后基于该特征曲线利用LVQ神经网络聚类算法,设计并用VC++6.0实现了THz光谱自动分类识别系统。分别对RDX、DNT、TNT、HMX四种爆炸物进行识别对比实验,运用原始数据训练出的分类器,识别率为96%,运用变换过后的特征数据训练出的LVQ分类器,识别率可以达到100%。实验证明,所设计的基于LVQ的神经网络分类器具有强大相似特征聚类功能和较高的识别率。  相似文献   

5.
A comparative analysis of responses of thin films of various conducting polymers (polyaniline, polypyrrole and poly-3-methylthiophene) to the vapors of polar as well as low- and nonpolar organic solvents was performed. Conductivity measurements, infra-red and electron paramagnetic resonance spectroscopy were used to characterize responses of the polymer films doped with different dopants. Main physical and chemical factors which define the magnitude of the response to the studied analytes were determined. It was shown that the differences in response of conducting polymer films are conditioned by the influence of chemical structure of the polymer and its dopant, and also by different nature of their doping.  相似文献   

6.
A novel N,N′-(glycine tert-butylester)-3,4,9,10-perylenediimide was chosen for the study of Langmuir–Blodgett (LB) thin film characterization and the sensing properties against selected volatile organic vapors. Different number of LB film layer was deposited onto a glass and quartz crystal substrate. The thin film fabrication process was monitored with UV–vis and quartz crystal microbalance (QCM) measurement techniques. The results indicated that absorbance increased linearly with the number of the layers on film. A similar linear relationship between frequency shift and number of the layers was observed by the QCM measurement. It can be concluded that high quality and uniform LB films were produced by using this novel perylenediimide material. Chloroform, toluene, benzene, ethyl alcohol and isopropyl alcohol vapors were selected to test this material's applicability in room temperature as a vapor sensor. This novel material showed a fast, large and reproducible response to chloroform and isopropyl alcohol vapor.  相似文献   

7.
Abstract— We describe herein the construction of a simple, low-power, broadly responsive vapor sensor. Carbon-black-organic-polymer composites have been shown to swell reversibly upon exposure to vapors. Thin films of carbon-black-organic-polymer composites have been deposited across two metallic leads, with swelling-induced resistance changes of the films signaling the presence of vapors. To identify and classify vapors, arrays of such vapor-sensing elements have been constructed, with each element containing a different organic polymer as the insulating phase. The differing gas-solid partition coefficients for the various polymers of the sensor array produce a pattern of resistance changes that can be used to classify vapors and vapor mixtures. This type of sensor array has been shown to resolve all organic vapors that have been analyzed, and can even resolve H2O from D2O.  相似文献   

8.
Trinitro toluene (TNT)-based explosives contain 2,4-dinitro toluene (DNT) and 1,4-dinitro benzene (DNB) as a manufacturing impurity, which form more vapour in the vicinity than TNT itself, and hence form a distinctive ‘chemical signature’ indicative of explosive. The concentration of these compounds over landmines is extremely low and well below the minimum detection limits of most field-portable chemical sensors. Carbowax was found to give good adsorption for 2,4-DNT vapour at higher temperature and reverse was in case of 2,6-DNT vapour. On the other hand, the same polymer film gives reasonably good adsorption for 1,4-DNB, more than 33% adsorption and poor response for 1,3-DNB, which is around only 20%. The adsorption rate was specific for all the four isomers as observed 0.81 ng/(cm2 min) for 2,4-DNT, 0.14 ng/(cm2 min) for 1,3-DNB, 0.07 ng/(cm2 min) for 2,6-DNT, and 0.04 ng/(cm2 min) for 1,4-DNB. This polymer was found to give different relative response to these nitro aromatic isomers. PDMS gives very good response for 2,4-DNT (98–100%) at 50 °C appears to be a distinguishing performance. The results of carbowax-1000 and poly dimethyl siloxane (PDMS) indicated that these two polymers could be more suitable for the realisation of polymer-based chemical sensor.  相似文献   

9.
A series of multi-walled carbon nanotubes/polyurethane (MWNTs/PU) composite conducting dispersoids were prepared via an in situ coupling reaction among linear hydroxyl-terminated polymer diols, 1,6-hexamethylene diisocyanate (HDI) and various chain extenders. The composite conducting thin films were formed by spin-coating and depositing the dispersoids onto comb-like electrode substrates. The resulting structure and the dispersion quality of MWNTs in the dispersoids were examined by means of FTIR, XRD, TEM, SEM and UV-vis analyses. The response of the as-prepared films toward some volatile organic solvent vapors such as benzene, anhydrous ether, acetone and chloroform was evaluated. The experimental results indicated that the composite conducting films constructed by hydroxyl-terminated poly(butadiene-co-acrylonitrile), trimethylolpropane, and MWNTs-OH bear better vapor responsiveness. The dispersion behavior of MWNTs in the dispersoids, types of MWNTs and soft-hard segmental compositions are believed to be closely related with the sensing properties of the films. In particular, the chemical linkage of MWNT-OH with HDI in the PU matrix is expected to improve the dispersivity and further to enhance the sensing properties of the composite sensors. The vapor sensing properties well reveal that these materials have a possibility as a candidate of volatile organic solvent vapor sensors.  相似文献   

10.
This paper reports the mechanical properties and fracture behavior of silicon carbide (3C-SiC) thin films grown on silicon substrates. Using bulge testing combined with a refined load-deflection model of long rectangular membranes, which takes into account the bending stiffness and prestress of the membrane material, the Young's modulus, prestress, and fracture strength for the 3C-SiC thin films with thicknesses of 0.40 and 1.42 mum were extracted. The stress distribution in the membranes under a load was calculated analytically. The prestresses for the two films were 322 plusmn 47 and 201 plusmn 34 MPa, respectively. The thinner 3C-SiC film with a strong (111) orientation has a plane-gstrain moduli of 415 plusmn 61 GPa, whereas the thicker film with a mixture of both (111) and (110) orientations exhibited a plane-strain moduli of 329 plusmn 49 GPa. The corresponding fracture strengths for the two kinds of SiC films were 6.49 plusmn 0.88 and 3.16 plusmn 0.38 GPa, respectively. The reference stresses were computed by integrating the local stress of the membrane at the fracture over edge, surface, and volume of the specimens and were fitted with Weibull distribution function. For the 0.40-mum-thick membranes, the surface integration has a better agreement between the data and the model, implying that the surface flaws are the dominant fracture origin. For the 1.42-mum-thick membranes, the surface integration presented only a slightly better fitting quality than the other two, and therefore, it is difficult to rule out unambiguously the effects of the volume and edge flaws. [2007-0191].  相似文献   

11.
 This paper reports on a new single hydrothermal process for the deposition of PZT thin films on titanium substrates. The Zr/(Zr+Ti) ratio is adjusted by controlling the Ti and Zr ionic concentrations. The films are analysed by X-ray powder diffraction (XRD), and Scanning Electron Microscopy (SEM). A PZT film of 5 μm thickness (Zr=0.52, Ti=0.48) very interesting from the point of view of piezoelectric constants, was successfully obtained by the control of ions concentration in the solution. The XRD patterns show well-defined peaks corresponding to a well-crystallised PZT phase with the ratio Zr/(Zr+Ti)=0.52. This composition is called the morphotropic-phase boundary (MPB), which means the separation between the tetragonal and rhombohedral phases. SEM micrographs show microcrystalline thin films with homogenous thickness and distribution on the titanium substrate. The microcrystals are cubic. It is demonstrated that large vibration amplitudes can be excited with these films under low voltage supply (5 V). Received: 28 December 1998/Accepted: 4 January 1999  相似文献   

12.
Preliminary testing of a prototype instrument employing an integrated array of six polymer-coated flexural plate wave (FPW) sensors and an adsorbent preconcentrator is described. Responses to thermally desorbed samples of individual organic solvent vapors and binary and ternary vapor mixtures are linear with concentration, and mixture responses are equivalent to the sums of the responses of the component vapors, which co-elute from the preconcentrator in most cases. Limits of detection as low as 0.3 ppm are achieved from a 60-s (34 cm3) air sample and peak widths at half-maximum range from 1 to 4 s. Tests at different flow rates suggest that the kinetics of vapor sorption in the sensor coating films may limit responses at higher flow rates, however, low data acquisition rates may also be contributory. Assessments of array performance using independent test data and Monte Carlo simulations with pattern recognition indicate that individual vapors and certain binary and ternary mixtures can be recognized/discriminated with very low error. More complex mixtures, and those containing homologous vapors, are problematic. This is the first report demonstrating multi-vapor analysis with an integrated FPW sensor array.  相似文献   

13.
14.
Titanium (IV) dioxide (TiO2) nanoparticles (NPs) with a 1-5 nm diameter were synthesized by a sol-gel method, functionalized with carboxylate ligands, and combined with carbon black (CB) to produce chemiresistive chemical vapor sensor films. The TiO2 acted as an inorganic support phase for the swellable, organic capping groups of the NPs, and the CB imparted electrical conductivity to the film. Such sensor composite films exhibited a reproducible, reversible change in relative differential resistance upon exposure to a series of organic test vapors. The response of such chemiresistive composites was comparable to, but generally somewhat smaller than, that of thiol-capped Au NPs. For a given analyte, the resistance response and signal-to-noise ratio of the capped TiO2-NP/CB composites varied with the identity of the capping ligand. Hence, an array of TiO2-NP/CB composites, with each film having a compositionally different carboxylate capping ligand, provided good vapor discrimination and quantification when exposed to a series of organic vapors. Principal components analysis of the relative differential resistance response of the sensor array revealed a clear clustering of the response for each analyte tested. This approach expands the options for composite-based chemiresistive vapor sensing, from use of organic monomeric or polymeric sorbent phases, to use of electrically insulating capped inorganic NPs as the nonconductive phase of chemiresistive composite vapor sensors.  相似文献   

15.
In this work, 2,3,7,8,12,13,17,18-Octaethyl-21H,23H-porphine (OEP) in its free base form and metalated with iron (III) chloride (FeOEP), magnesium(II) (MgOEP) and cobalt(II) (CoOEP) have been used to fabricate Langmuir-Blodgett (LB) thin films. Using the surface pressure-surface area (Π-A) isotherm graphs optimum conditions for thin film deposition have been determined and by changing the deposition parameters various thin films have been deposited. Quartz Crystal Microbalance (QCM) system was used to investigate their gas sensing performances during exposure to Volatile Organic Compounds (VOCs) including chloroform, benzene and toluene. The surface properties have been investigated using Atomic Force Microscopy (AFM) and analyzed together with the QCM results to understand the effect of the surface properties on gas sensing mechanism. It is observed that larger surface area leads to higher response in gas sensing applications in terms of resonance frequency change.  相似文献   

16.
用真空热蒸发两步法在玻璃衬底制备SnO2和La掺杂SnO2薄膜。研究氧化、热处理工艺和La掺杂含量对SnO2薄膜结构、气敏特性的影响。结果显示:经T=550℃,t=45 min氧化、热处理后,得到n型金红石结构SnO2薄膜。适当掺La可改善SnO2薄膜结晶状况,掺La后SnO2薄膜对气体的选择性和灵敏性均得到明显的改善,在气体体积分数为1×10-2时,掺La(5%)的SnO2薄膜对乙醇的灵敏度为12;掺La(3%)的SnO薄膜对丙酮的灵敏度可达到14。  相似文献   

17.
Due to their use in the fields of sensors, energy harvesting, capacitors and FeRAMs the fabrication of microstructured ferroelectric thin films is an important research field. Therefore a modified sol–gel process chain has been developed to produce fine patterned ferroelectric PZT (PbZr0.52Ti0.48O3) thin films by direct UV-lithography. A sol based on methacrylic acid was developed to provide a photosensitive metal organic PZT precursor. The sol was used to obtain photosensitive xerogel films by spin-coating, which were patterned using conventional UV-photolithography equipment. After development the patterned xerogel films were pyrolized and crystallized in air via rapid thermal annealing in order to obtain crystalline PZT thin films. The patterned PZT films were investigated by XRD technique and SEM-micrographs. Finely patterned, crack free, crystalline PZT thin films were obtained.  相似文献   

18.
Electronic nose for space program applications   总被引:3,自引:0,他引:3  
The ability to monitor air contaminants in the shuttle and the International Space Station is important to ensure the health and safety of astronauts, and equipment integrity. Three specific space applications have been identified that would benefit from a chemical monitor: (a) organic contaminants in space cabin air; (b) hypergolic propellant contaminants in the shuttle airlock; (c) pre-combustion signature vapors from electrical fires. NASA at Kennedy Space Center (KSC) is assessing several commercial and developing electronic noses (E-noses) for these applications. A short series of tests identified those E-noses that exhibited sufficient sensitivity to the vapors of interest. Only two E-noses exhibited sufficient sensitivity for hypergolic fuels at the required levels, while several commercial E-noses showed sufficient sensitivity of common organic vapors. These E-noses were subjected to further tests to assess their ability to identify vapors. Development and testing of E-nose models using vendor supplied software packages correctly identified vapors with an accuracy of 70-90%. In-house software improvements increased the identification rates between 90 and 100%. Further software enhancements are under development. Details on the experimental setup, test protocols, and results on E-nose performance are presented in this paper along with special emphasis on specific software enhancements.  相似文献   

19.
Wafer-level mechanical characterization of silicon nitride MEMS   总被引:2,自引:0,他引:2  
The mechanical and physical properties of silicon nitride thin films have been characterized, particularly for their application in load-bearing MEMS applications. Both stoichiometric (high-stress) and silicon-rich (low-stress) films deposited by LPCVD have been studied. Young's modulus, E, has been determined using conventional lateral resonators and by bulge testing of membranes, and tensile strength has been determined using a specially designed microtensile specimen. All microdevices have been fabricated using standard micromachining. We have also measured the thermal expansion coefficient of stoichiometric silicon nitride. Our best estimate of E is 325/spl plusmn/30 GPa for stoichiometric and 295/spl plusmn/30 GPa for silicon-rich silicon nitride. The average tensile strength for the stoichiometric material is 6.4/spl plusmn/0.6 GPa, while that for the silicon-rich material is 5.5/spl plusmn/0.8 GPa; the burst strength of membranes of the stoichiometric material is 7.1/spl plusmn/0.2 GPa.  相似文献   

20.
In contrast to conventional hydrophobic Conductive Polymer nanoComposites (CPCs) used to design vapor sensors, which are mostly soluble in organic solvents, monodispersed acrylate copolymer latexes present the double advantage of being more sensitive and selective towards polar vapors such as water. A hierarchically structured latex based CPC film was obtained by co-dispersion of an aqueous acrylic emulsion with multiwalled carbon nanotubes (CNTs), followed by spray layer by layer (sLbL) assembly. The analysis of CPC films morphology by AFM and TEM show that a segregated network of CNT as been achieved by partial coalescence of latex nanoparticles and homogeneously assembled in 3D. Transducer sensitivity was investigated as a function of CNT content, latex glass transition temperature (Tg), organic vapor nature and vapor concentration. The source of the high sensitivity and selectivity observed for these latex-based composites towards water vapor is assumed to mainly result from ionic interaction of SDS with water molecules offering interesting perspectives of development. The different diffusion regimes through the CPC transducer are visualized, modeled and interpreted with the Langmuir-Henry-Clustering (LHC) model, showing that only water is reaching a clustering mode at high vapor concentration. Finally it is believed that the unique hierarchical architecture of BA latex-CNT sensors is responsible for their quick, stable and reproducible responses to vapors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号