首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gas distribution mapping (GDM) learns models of the spatial distribution of gas concentrations across 2D/3D environments, among others, for the purpose of localizing gas sources. GDM requires run-time robot positioning in order to associate measurements with locations in a global coordinate frame. Most approaches assume that the robot has perfect knowledge about its position, which does not necessarily hold in realistic scenarios. We argue that the simultaneous localization and mapping (SLAM) algorithm should be used together with GDM to allow operation in an unknown environment. This paper proposes an SLAM-GDM approach that combines Hector SLAM and Kernel DM?+?V through a map merging technique. We argue that Hector SLAM is suitable for the SLAM-GDM approach since it does not perform loop closure or global corrections, which in turn would require to re-compute the gas distribution map. Real-time experiments were conducted in an environment with single and multiple gas sources. The results showed that the predictions of gas source location in all trials were often correct to around 0.5–1.5 m for the large indoor area being tested. The results also verified that the proposed SLAM-GDM approach and the designed system were able to achieve real-time operation.  相似文献   

2.
3.
The strength of appearance-based mapping models for mobile robots lies in their ability to represent the environment through high-level image features and to provide human-readable information. However, developing a mapping and a localization method using these kinds of models is very challenging, especially if robots must deal with long-term mapping, localization, navigation, occlusions, and dynamic environments. In other words, the mobile robot has to deal with environmental appearance change, which modifies its representation of the environment. This paper proposes an indoor appearance-based mapping and a localization method for mobile robots based on the human memory model, which was used to build a Feature Stability Histogram (FSH) at each node in the robot topological map. This FSH registers local feature stability over time through a voting scheme, and the most stable features were considered for mapping, for Bayesian localization and for incrementally updating the current appearance reference view in the topological map. The experimental results are presented using an omnidirectional images dataset acquired over the long-term and considering: illumination changes (time of day, different seasons), occlusions, random removal of features, and perceptual aliasing. The results include a comparison with the approach proposed by Dayoub and Duckett (2008) [19] and the popular Bag-of-Words (Bazeille and Filliat, 2010) [35] approach. The obtained results confirm the viability of our method and indicate that it can adapt the internal map representation over time to localize the robot both globally and locally.  相似文献   

4.
Inexpensive ultrasonic sensors, incremental encoders, and grid-based probabilistic modeling are used for improved robot navigation in indoor environments. For model-building, range data from ultrasonic sensors are constantly sampled and a map is built and updated immediately while the robot is travelling through the workspace. The local world model is based on the concept of an occupancy grid. The world model extracted from the range data is based on the geometric primitive of line segments. For the extraction of these features, methods such as the Hough transform and clustering are utilized. The perceived local world model along with dead-reckoning and ultrasonic sensor data are combined using an extended Kalman filter in a localization scheme to estimate the current position and orientation of the mobile robot, which is subsequently fed to the map-building algorithm. Implementation issues and experimental results with the Nomad 150 mobile robot in a real-world indoor environment (office space) are presented  相似文献   

5.
One important design decision for the development of autonomously navigating mobile robots is the choice of the representation of the environment. This includes the question of which type of features should be used, or whether a dense representation such as occupancy grid maps is more appropriate. In this paper, we present an approach which performs SLAM using multiple representations of the environment simultaneously. It uses reinforcement to learn when to switch to an alternative representation method depending on the current observation. This allows the robot to update its pose and map estimate based on the representation that models the surrounding of the robot in the best way. The approach has been implemented on a real robot and evaluated in scenarios, in which a robot has to navigate in- and outdoors and therefore switches between a landmark-based representation and a dense grid map. In practical experiments, we demonstrate that our approach allows a robot to robustly map environments which cannot be adequately modeled by either of the individual representations.  相似文献   

6.
Vector field SLAM is a framework for localizing a mobile robot in an unknown environment by learning the spatial distribution of continuous signals such as those emitted by WiFi or active beacons. In our previous work we showed that this approach is capable of keeping a robot localized in small to medium sized areas, e.g. in a living room, where four continuous signals of an active beacon are measured (Gutmann et al., 2012). In this article we extend the method to larger environments up to the size of a complete home by deploying more signal sources for covering the expanded area. We first analyze the complexity of vector field SLAM with respect to area size and number of signals and then describe an approximation that divides the localization map into decoupled sub-maps to keep memory and run-time requirements low. We also describe a method for re-localizing the robot in a vector field previously mapped. This enables a robot to resume its navigation after it has been kidnapped or paused and resumed. The re-localization method is evaluated in a standard test environment and shows an average position accuracy of 10 to 35 cm with a localization success rate of 96 to 99%. Additional experimental results from running the system in houses of up to 125 m2 demonstrate the performance of our approach. The presented methods are suitable for commercial low-cost products including robots for autonomous and systematic floor cleaning.  相似文献   

7.
基于不确定网格地图的移动机器人导航   总被引:1,自引:0,他引:1  
研究了在未知环境下的移动机器人导航问题.在分析超声传感器不确定性模型的基础上,根据模糊集理论创建网格地图来描述机器人工作环境,使用模糊隶属度表示网格占用状态.通过网格信息融合来减弱传感器测量误差,提高网格地图的精度.提出基于模糊网格地图的路径规划算法,利用重复局部优化路径搜索来实现全局路径规划.机器人通过交替进行创建地图和路径规划两个基本过程来完成导航任务.仿真结果表明创建的地图能较精确地表示环境信息。规划的路径可以使机器人安全地到达目的地.  相似文献   

8.
This paper addresses the improved method for sonar sensor modeling which reduces the specular reflection uncertainty in the occupancy grid. Such uncertainty reduction is often required in the occupancy grid mapping where the false sensory information can lead to poor performance. Here, a novel algorithm is proposed which is capable of discarding the unreliable sonar sensor information generated due to specular reflection. Further, the inconsistency estimation in sonar measurement has been evaluated and eliminated by fuzzy rules based model. To achieve the grid map with improved accuracy, the sonar information is further updated by using a Bayesian approach. In this paper the approach is experimented for the office environment and the model is used for grid mapping. The experimental results show 6.6% improvement in the global grid map and it is also found that the proposed approach is consuming nearly 16.5% less computation time as compared to the conventional approach of occupancy grid mapping for the indoor environments.  相似文献   

9.
In this paper an extended Kalman filter (EKF) is used in the simultaneous localisation and mapping (SLAM) of a four-wheeled mobile robot in an indoor environment. The robot’s pose and environment map are estimated from incremental encoders and from laser-range-finder (LRF) sensor readings. The map of the environment consists of line segments, which are estimated from the LRF’s scans. A good state convergence of the EKF is obtained using the proposed methods for the input- and output-noise covariance matrices’ estimation. The output-noise covariance matrix, consisting of the observed-line-features’ covariances, is estimated from the LRF’s measurements using the least-squares method. The experimental results from the localisation and SLAM experiments in the indoor environment show the applicability of the proposed approach. The main paper contribution is the improvement of the SLAM algorithm convergence due to the noise covariance matrices’ estimation.  相似文献   

10.
Using occupancy grids for mobile robot perception and navigation   总被引:6,自引:0,他引:6  
Elfes  A. 《Computer》1989,22(6):46-57
An approach to robot perception and world modeling that uses a probabilistic tesselated representation of spatial information called the occupancy grid is reviewed. The occupancy grid is a multidimensional random field that maintains stochastic estimates of the occupancy state of the cells in a spatial lattice. To construct a sensor-derived map of the robot's world, the cell state estimates are obtained by interpreting the incoming range readings using probabilistic sensor models. Bayesian estimation procedures allow the incremental updating of the occupancy grid, using readings taken from several sensors over multiple points of view. The use of occupancy grids from mapping and for navigation is examined. Operations on occupancy grids and extensions of the occupancy grid framework are briefly considered  相似文献   

11.
目的 SLAM(simultaneous localization and mapping)是移动机器人在未知环境进行探索、感知和导航的关键技术。激光SLAM测量精确,便于机器人导航和路径规划,但缺乏语义信息。而视觉SLAM的图像能提供丰富的语义信息,特征区分度更高,但其构建的地图不能直接用于路径规划和导航。为了实现移动机器人构建语义地图并在地图上进行路径规划,本文提出一种语义栅格建图方法。方法 建立可同步获取激光和语义数据的激光-相机系统,将采集的激光分割数据与目标检测算法获得的物体包围盒进行匹配,得到各物体对应的语义激光分割数据。将连续多帧语义激光分割数据同步融入占据栅格地图。对具有不同语义类别的栅格进行聚类,得到标注物体类别和轮廓的语义栅格地图。此外,针对语义栅格地图发布导航任务,利用路径搜索算法进行路径规划,并对其进行改进。结果 在实验室走廊和办公室分别进行了语义栅格建图的实验,并与原始栅格地图进行了比较。在语义栅格地图的基础上进行了路径规划,并采用了语义赋权算法对易移动物体的路径进行对比。结论 多种环境下的实验表明本文方法能获得与真实环境一致性较高、标注环境中物体类别和轮廓的语义栅格地图,且实验硬件结构简单、成本低、性能良好,适用于智能化机器人的导航和路径规划。  相似文献   

12.
We present a novel approach to estimating depth from single omnidirectional camera images by learning the relationship between visual features and range measurements available during a training phase. Our model not only yields the most likely distance to obstacles in all directions, but also the predictive uncertainties for these estimates. This information can be utilized by a mobile robot to build an occupancy grid map of the environment or to avoid obstacles during exploration—tasks that typically require dedicated proximity sensors such as laser range finders or sonars. We show in this paper how an omnidirectional camera can be used as an alternative to such range sensors. As the learning engine, we apply Gaussian processes, a nonparametric approach to function regression, as well as a recently developed extension for dealing with input-dependent noise. In practical experiments carried out in different indoor environments with a mobile robot equipped with an omnidirectional camera system, we demonstrate that our system is able to estimate range with an accuracy comparable to that of dedicated sensors based on sonar or infrared light.  相似文献   

13.
The article presents an in situ clouds-powered radioactive source detection and localization approach, namely color-depth-radiation mapping, using 3-D land mapping within hazardous indoor environment and incorporating sensor fusion between a RGB-D camera and a portable radiation detector. In the approach, to achieve fast and robust image registration, color images detected by the camera are initially employed to extract crucial visual features and establish pairs of matched image features between successive scanned images. Following this, matched features are incorporated with the corresponding calibrated depth information to generate 3-D keypoint cloud pairs. To remove potential noises in the acquired data-sets, a novel geometric-based filtering algorithm is developed to reject incorrect keypoint pairs prior to iterative closest point-based image registration. Most importantly, an algorithm to determine the radioactive sources’ parameters including strength and 3-D position is developed for accurate radioactive source detection and localization. With this, the radioactive sources can be accurately pinpointed in the established 3-D map for efficient contamination control and safety management. Two radiation testing experiments were performed to verify the feasibility of the approach and its detection accuracy. The simulation results indicate that the proposed approach can reach up to 95% accuracy of radiation source localization incorporated in the 3-D map.  相似文献   

14.
张海强  窦丽华  方浩 《计算机工程》2010,36(18):247-249
针对使用立体视觉建立环境地图方法存在信息不完整的问题,提出一种基于地面视差分布的栅格地图建立方法。利用地面视差分布在视差图中进行障碍物和地面点的检测,通过统一但参数值不同的投影模型将障碍物像素和地面点像素投影到栅格地图中,同时考虑立体视觉的量化和匹配误差、地面视差和栅格占据概率的空间分布。通过在非结构化环境中的实验表明,该方法可以实时地建立信息完整且准确的栅格地图。  相似文献   

15.
Inspired by the Witkowski’s algorithm, we introduce a novel path planning and replanning algorithm — the two-way D (TWD) algorithm — based on a two-dimensional occupancy grid map of the environment. Unlike the Witkowski’s algorithm, which finds optimal paths only in binary occupancy grid maps, the TWD algorithm can find optimal paths in weighted occupancy grid maps. The optimal path found by the TWD algorithm is the shortest possible path for a given occupancy grid map of the environment. This path is more natural than the path found by the standard D algorithm as it consists of straight line segments with continuous headings. The TWD algorithm is tested and compared to the D and Witkowski’s algorithms by extensive simulations and experimentally on a Pioneer 3DX mobile robot equipped with a laser range finder.  相似文献   

16.
为了使仿人机器人能够在真实世界中自由行走,包括上下楼梯、跨过障碍物,本文提出了一种构建机器人环境的2.5维网格地图的方法。首先利用传感器数据建立并更新一个3D占有率网格和一个平地网格,3D占有率网格为最终的地图提供概率支持,以保证环境模型对传感器噪声的鲁棒性,平地网格用来存储平面高度值。然后结合两个网格建立导航地图,该地图上每一个单元格被标记为平地或障碍物类型以及它的高度值,平地的高度信息是精确的而障碍物的高度信息是粗略的。最后在仿真平台上验证了所提出的方法,仿真结果证实此方法能够有效地产生用于机器人避障和路径规划的地图。  相似文献   

17.
This paper presents a new approach to search for a gas/odor source using an autonomous mobile robot. The robot is equipped with a CMOS camera, gas sensors, and airflow sensors. When no gas is present, the robot looks for a salient object in the camera image. The robot approaches any object found in the field of view, and checks it with the gas sensors to see if the object is releasing gas. On the other hand, if the robot detects the presence of gas while wandering around the area, it turns toward the direction of the wind that carries the gas. The robot then looks for any visible object in that direction. These navigation strategies are implemented into the robot under the framework of the behavior-based subsumption architecture. Experimental results on the search for a leaking bottle in an indoor environment are presented to demonstrate the validity of the navigation strategies.  相似文献   

18.
In this paper, a modified method for occupancy grid map building by a moving mobile robot and a scanning ultrasonic range-finder is proposed. The map building process consists of two phases: (1) gleaning of information from environment, and (2) sonar data processing. For sonar data processing the proposed modified method combines: (1) statistical approach for probability sonar model building; and (2) application of fuzzy logic theory for sonar data fusion. It is experimentally shown that, in some applications, the proposed modified method has advantages over other well-known methods.  相似文献   

19.
自主移动机器人的室内结构化环境地图创建   总被引:1,自引:1,他引:0  
定位与地图创建是自主移动机器人领域研究的重要课题.本文阐述了一种以扩展卡尔曼滤波算法为主要框架,运用直接位姿控制模型描述机器人运动的算法,实现了机器人在室内结构化环境中的同时定位和地图创建.仿真与实验结果表明,里程计信息无法满足定位和创建环境地图的要求,本文算法则能够实现机器人的精确定位.并生成满足一致性要求的地图.  相似文献   

20.
《Advanced Robotics》2013,27(4):437-450
This paper presents a methodology for building a high-accuracy environmental map using a mobile robot. The design approach uses low-cost infrared range-finder sensors incorporating with neural networks. To enhance the map quality, the errors occurring from the sensors are corrected. The non-linearity error of the sensors is compensated using a backpropagation neural network and the random error of readings including the uncertainty of the environment is taken into a sensor model as a probabilistic approach. The map is represented by an occupancy grid framework and updated by the Bayesian estimation mechanism. The effectiveness of the proposed method is verified through a series of experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号