首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cheap and efficient photocatalysts were fabricated by simply mixing TiO2 nanoparticles (NPs) and CuO NPs. The two NPs combined with each other to form TiO2/CuO mixture in an aqueous solution due to the opposite surface charge. The TiO2/CuO mixture exhibited photocatalytic hydrogen production rate of up to 8.23 mmol h−1 g−1 under Xe lamp irradiation when the weight ratio of P25 to CuO was optimized to 10. Although the conduction band edge position of CuO NPs is more positive than normal hydrogen electrode, the TiO2/CuO mixture exhibited good photocatalytic hydrogen production performance because of the inter-particle charge transfer between the two NPs. The detailed mechanism of the photocatalytic hydrogen production is discussed. This mixing method does not require a complicated chemical process and allows mass production of the photocatalysts.  相似文献   

2.
Highly durable catalyst for high temperature methanol steam reforming is required for a compact hydrogen processor. Deactivation of a coprecipitated Cu/ZnO/ZrO2 catalyst modified with In2O3 is very gradual even in the high temperature methanol steam reforming mainly at 500 °C, but the initial activity is considerably low. Addition of Y2O3 to Cu/ZnO/ZrO2/In2O3 increases its initial activity due to the higher Cu surface amount, while the activity comes gradually close to that for the catalyst without Y2O3 during the reaction. Coprecipitation of Cu/ZnO/ZrO2/Y2O3/In2O3 on a zirconia support triply increases the overall activity by keeping the durability while the amount of the coprecipitated portion is a half of that without the support. On the composite catalyst, sintering of Cu particles is suppressed. The surface Cu amount is similar to that without the support, but the Cu surface activity is much higher probably because of the small Cu particle size.  相似文献   

3.
The present study aims to investigate the thermal behavior and hydrogen production characteristics from methanol steam reforming (MSR) and autothermal reforming (ATR) under the effects of a Cu-Zn-based catalyst and spiral preheating. Two different reaction temperatures of 250 and 300 °C are taken into account. Meanwhile, the O/C ratio (i.e. the molar ratio between O2 and methanol) and S/C ratio (i.e. the molar ratio between steam and methanol) are controlled in the ranges of 0-0.5 and 1-2, respectively. The condition of O/C = 0 represents the reaction of MSR. By monitoring the supplied power into the reactor with a fixed gas hourly space velocity (GHSV) of 72,000 h−1, the experimental results indicate that an exothermic reaction from ATR can be attained once the O/C ratio is as high as 0.125. Increasing O/C ratio causes more heat released from the reaction, this results in the decrease in the frequency of supplied power, especially at O/C = 0.5. It is noted that the concentration of CO in the product gas is quite low compared to that of CO2. An increase in O/C ratio abates the concentration of H2 from the consumption of per mol methanol; however, the H2 yield in terms of thermodynamic analysis is increased. On account of the utilization of spiral preheating on the reactants, within the investigated operating conditions the methanol conversion and hydrogen yield were always higher than 95 and 90%, respectively. A comparison suggests that the methanol conversion from ATR of methanol with spiral preheating is superior to those of other studies.  相似文献   

4.
The photocatalytic hydrogen production from aqueous methanol solution was investigated with ZnO/TiO2, SnO/TiO2, CuO/TiO2, Al2O3/TiO2 and CuO/Al2O3/TiO2 nanocomposites. A mechanical mixing method, followed by the solid-state reaction at elevated temperature, was used for the preparation of nanocomposite photocatalyst. Among these nanocomposite photocatalysts, the maximal photocatalytic hydrogen production was observed with CuO/Al2O3/TiO2 nanocomposites. A variety of components of CuO/Al2O3/TiO2 photocatalysts were tested for the enhancement of H2 formation. The optimal component was 0.2 wt% CuO/0.3 wt% Al2O3/TiO2. The activity exhibited approximately tenfold enhancement at the optimum loading, compared with that with pure P-25 TiO2. Nano-sized TiO2 photocatalytic hydrogen technology has great potential for low-cost, environmentally friendly solar-hydrogen production to support the future hydrogen economy.  相似文献   

5.
To improve the sustainability of microalgae as a bioenergy feedstock, lipid-extracted microalgae (LEM) are often further treated by anaerobic digestion (AD). However, the residual chloroform used for extracting lipids as a solvent could inhibit this process, an aspect that has not been studied to date. In this study, the inhibitory effect of chloroform on H2 and CH4 production was investigated by performing batch tests. To prepare the feedstock, Chlorella vulgaris was ultrasonicated and the supernatant was discarded after centrifugation. In case of H2 production, it was found that the H2 yield fell to almost half that of the control (15.6 mL H2/g CODadded) at 100 mg CHCl3/L. The reason for the decrease of the H2 yield with the increase of chloroform level was due to the change of metabolites from acetate and butyrate to lactate via a non-hydrogenic reaction. In comparison with H2 production, a much more severe inhibitory effect of chloroform on CH4 production was observed. The inhibitor concentration (IC30, 60, and 90) on H2 production was 138, 319, and 622 mg CHCl3/L, respectively, while concentrations of 15, 37, and 86 mg CHCl3/L were obtained on CH4 production. When the chloroform concentration was ≥25 mg/L on CH4 production, more than 2 g COD/L of organic acids remained, resulting in a decrease of CH4 yield. These findings indicate that the residual chloroform in LEM should be seriously considered to prevent possible microbial inhibition when designing a process for additional energy recovery from microalgae via AD.  相似文献   

6.
A new system using Bi2S3-loaded TiO2 photocatalysts (Bi2S3/TiO2) was developed to enhance the production of hydrogen. The Bi2S3 (5, 10, 15 wt%) particles in an urchin-like morphology with a length of about 2∼3 μm and a diameter of 15–20 nm, which can absorb all wavelengths in UV–visible radiation, were prepared by solvothermal method and loaded onto nano-sized TiO2 (10∼15 nm) for photocatalysis on hydrogen production. The evolution of H2 from methanol/water (1:1) photo splitting over the Bi2S3/TiO2 composite in the liquid system was enhanced, compared with that over pure TiO2 and Bi2S3. In particular, 14.2 ml of H2 gas was produced after 12 h when 0.5 g of a 10 wt% Bi2S3/TiO2 composite was used. On the basis of cyclic voltammetry (CV) results, the high photoactivity was attributed to the increase of band gap in the Bi2S3/TiO2 composite, due to the decreased recombination between the excited electrons and holes.  相似文献   

7.
The potential of simultaneous hydrogen production and in situ water removal in a thermally coupled multitubular two-membrane reactor (TCTMR) were studied numerically. Methanol synthesis is carried out in exothermic side with H-SOD membrane and supplies the necessary heat for the endothermic side. Dehydrogenation of cyclohexane is carried out in endothermic side with hydrogen-permselective Pd/Ag membrane wall. Therefore, the proposed reactor consists of two membranes, one for separation of pure hydrogen from endothermic side and another one for separation of water from exothermic side. The motivation for in situ H2O removal during methanol synthesis by using H-SOD membranes is to displace the water-gas shift equilibrium to enhance conversion of CO2 to improve methanol productivity. A steady-state heterogeneous model is developed to analyze the operation of the coupled methanol synthesis. The proposed model has been used to compare the performance of a TCTMR with conventional reactor (CR) and thermally coupled membrane reactor (TCMR) at identical process conditions. This comparison shows that TCTMR in addition to possessing advantages of a TCMR has a more favorable profile of temperature and increased productivity compared with other reactors. Furthermore, lower water production rate in TCTMR reduces catalyst re-crystallization.  相似文献   

8.
In this study, we report the ability to split H2O into hydrogen at a reduced voltage by the influence of sulfur dioxide (SO2) and anode tolerance materials. This will improve the energy consumption for the production of hydrogen. Hydrogen is produced at the cathode while the anode electrode is bathed in sulfur dioxide and water to form sulfuric acid by the application of potential in the form of electrical energy. In the presence of SO2, the theoretical equilibrium voltage requirement is 0.19 V, thereby reducing the thermochemical free energy to less than one-sixth of its initial value, that is, from 56 to 9.18 kcal/mole. By using SO2 to scavenge the anode we have in practice reduced the equilibrium voltage to 0.6 V. Based on different electrode configurations, ruthenium oxide (RuO2) electrocatalyst deposited on silicon (Si) electrode exhibited superior performance for the low voltage H2O electrolysis.  相似文献   

9.
Perovskite type RE-doped NaTaO3 (where RE represents Rare Earths elements like Y, La, Ce, Yb) catalysts, derived from solid state synthesis method, have been used for the photocatalytic hydrogen production from water using methanol as sacrificial agent. The photocatalytic activity of NaTaO3 in H2 production is improved on its doping with Y, La or Yb elements. In contrast, Ce-doped sample shows a worsening of the photoactivity, which is even lower than the un-doped catalyst. The characterization of the materials reveals that the monoclinic structure and the presence of Ce4+ do not favour to increase the performance of NaTaO3. Previous reports proved that La-doping boosted the water splitting photoactivity of NaTaO3. However the results of this work reveal an increase in the H2 production by the use of Y as dopant. This enhancement in the photoactivity could be related with the modification of the opto-electronic properties of NaTaO3 with the inclusion of RE elements (Y, La, Yb) in the orthorhombic structure of this perovskite. Moreover, the catalytic activity of all the RE-doped samples is further increased on their modification with Pt nanoparticles (NPs) loading that act as photo-generated electron scavenger facilitating the reduction reactions.  相似文献   

10.
New photocatalysts of Sb2TixSy (x = 0, 0.5, 1.0, 1.5 mol and y = 3, 4, 5, 6 mol) fan blade-like core-shell nanorods have been designed ultimately to enhance hydrogen production. The nanorods of 500 nm long and 60–100 nm wide are Sb2S3 nanorod surrounded by an amorphous TiS2 membrane, showing absorption band edges of above 600 nm. The evolution of H2 from methanol/water (1:1) photo-splitting over Sb2TixSy nanorods in the liquid system is doubled, compared to that over pure Sb2S3. Particularly, 52 μmol of H2 gas is produced after 10 h when 0.5 g of Sb2Ti1.0S5 nanorods is used at pH = 7, and the performance is increased by more than 50% at higher pH. Based on cyclic voltammetry (CV) and UV-Visible absorption spectra, the high photocatalytic activity can be attributed to the existence of an appropriate band-gap state, which includes the scope of the redox potential of water in Sb2Ti1.0S5 nanorods, resulting in the promotion of the redox reaction of water.  相似文献   

11.
The highly ordered Ag-SrTiO3 nanotube arrays (NTAs) with uniform size were successfully synthesized by a combination of anodic oxidation, hydrothermal process and photocatalytic reduction method. X-ray photoelectron spectroscopy analysis reveals that Ag exists in the form of metallic silver, which is in good agreement with the X-ray diffraction characterization. Moreover, the UV-vis diffuse reflectance spectra indicate that Ag-SrTiO3 NTAs have a strong absorption in the visible region which is attributed to the plasmon resonance of silver nanoparticles. After Ag loading, a further improvement of the photocatalytic activity for hydrogen production was obtained. Based on the above results, a possible electron-hole transfer mechanism was also assumed.  相似文献   

12.
The electrochemical production of hydrogen (H2) from liquid methanol in acidic aqueous media was investigated in a proton exchange membrane (PEM) electrolyser, comprising a two-compartment glass cell with a membrane electrode assembly (MEA) composed of a Nafion® 117 membrane and gas diffusion electrodes (GDE). Methanol electrolysis was studied at concentrations ranging from 0 to 16 M, where 0 M corresponds to water electrolysis. The influence of catalysts (Pt and Pt–Ru), catalyst support (C or black), operating temperatures (23, 50 and 75 °C) and operating modes (dry and wet cathode) were evaluated in the static mode. A theoretical thermodynamic analysis of the system was done as a function of temperature. The limiting current densities, kinetic parameters, including the Tafel slopes and current exchange density, and apparent activation energies were determined.  相似文献   

13.
Thermodynamic modeling of the steam reforming of light alcohols using CaO, CaO*MgO, Na2ZrO3, Li2ZrO3 and Li4SiO4 as CO2 absorbents was carried out to determine promising operating conditions to produce a high hydrogen yield (YH2)(YH2) and concentration (% H2). Ethanol and methanol were studied at 300–800 °C and 1 atm. Steam to alcohol (S/COH) feed molar ratio varied from 1:1 (stoichiometric) to 6:1 for methanol and from 3:1 (stoichiometric) to 6:1 for ethanol. Thermodynamic simulations employed the Gibbs free energy minimization technique. Results indicate no carbon formation at S/COH ≤ stoichiometric. For both alcohols reforming at 600 °C and S/COH = 6, using CaO, CaO*MgO, and Na2ZrO3 produced optimal YH2YH2 and hydrogen purity (% H2). In both reforming systems most favorable thermodynamics were obtained with CaO, CaO*MgO and Na2ZrO3 as absorbents. A Thermal efficiency analysis performed in all system confirmed the superiority of the CO2 absorption systems against conventional reforming processes.  相似文献   

14.
In this work, CO2 capture and H2 production during the steam gasification of coal integrated with CO2 capture sorbent were investigated using a horizontal fixed bed reactor at atmospheric pressure. Four different temperatures (650, 675, 700, and 750 °C) and three sorbent-to-carbon ratios ([Ca]/[C] = 0, 1, 2) were studied. In the absence of sorbent, the maximum molar fraction of H2 (64.6%) and conversion of coal (71.3%) were exhibited at the highest temperature (750 °C). The experimental results verified that the presence of sorbent in the steam gasification of coal enhanced the molar fraction of H2 to more than 80%, with almost all CO2 was fixed into the sorbent structure, and carbon monoxide (CO) was converted to H2 and CO2 through the water gas shift reaction. The steam gasification of coal integrated with CO2 capture largely depended on the reaction temperature and exhibited optimal conditions at 675 °C. The maximum molar fraction of H2 (81.7%) and minimum CO2 concentration (almost 0%) were obtained at 675 °C and a sorbent-to-carbon ratio of 2.  相似文献   

15.
Tri-reforming, as a new approach for the treatment of CO2 in flue stack gases, has been studied in this work. To determine the optimum operating conditions for the production of syngas with target ratio and maximum CO2 conversion, the effects of temperature (400–1200 °C), CH4/Flue gas ratio (0.4–1.0) and pressure (1–5 atm), on the compositions of syngas were investigated. Also, the methanol production from syngas has been rigorously simulated. An optimum heat exchange network was obtained with the objective of minimizing both utility and capital costs, which were calculated by General Algebraic Modeling system (GAMS). Furthermore, an economic analysis was carried out to substantiate the potential profits based on the conceptual results from heat integration. Results showed that the tri-reforming process, when integrated with methanol synthesis, is an economical approach for the treatment and utilization of CO2 in flue gases.  相似文献   

16.
Recovery of hydrogen from industrial H2S waste using spinel photocatalyst was studied. Spinel metal oxide photocatalysts (CuGa2−xFexO4 for x = 0.8, 0.6 and 0.4) were synthesized by ceramic route. They were loaded with 0.5 and 1 wt% noble metal oxide, RuO2. Their XRD pattern revealed a single phase cubic spinel crystalline structure for all the catalysts. SEM displayed small size cubic particles with the particle size decreasing with the decrease in iron content. 1 wt% RuO2 loaded CuGa1.6Fe0.4O4 decomposed H2S in aqueous 0.5 M KOH solution under visible light (λ ≥ 420 nm) irradiation and generated H2 to the tune of 10,045 μmol/h, giving rise to a high quantum efficiency of 21% at 510 nm.  相似文献   

17.
The hydrogen photo-evolution was successfully achieved in aqueous (Fe1−xCrx)2O3 suspensions (0 ≤ x ≤ 1). The solid solution has been prepared by incipient wetness impregnation and characterized by X-ray diffraction, BET, transport properties and photo-electrochemistry. The oxides crystallize in the corundum structure, they exhibit n-type conductivity with activation energy of ∼0.1 eV and the conduction occurs via adiabatic polaron hops. The characterization of the band edges has been studied by the Mott Schottky plots. The onset potential of the photo-current is ∼0.2 V cathodic with respect to the flat band potential, implying a small existence of surface states within the gap region. The absorption of visible light promotes electrons into (Fe1−xCrx)2O3-CB with a potential (∼−0.5 VSCE) sufficient to reduce water into hydrogen. As expected, the quantum yield increases with decreasing the electro affinity through the substitution of iron by the more electropositive chromium which increases the band bending at the interface and favours the charge separation. The generated photo-voltage was sufficient to promote simultaneously H2O reduction and SO32− oxidation in the energetically downhill reaction (H2O + SO32− → H2 + SO42−, ΔG = −17.68 kJ mol−1). The best activity occurs over Fe1.2Cr0.8O3 in SO32− (0.1 M) solution with H2 liberation rate of 21.7 μmol g−1 min−1 and a quantum yield 0.06% under polychromatic light. Over time, a pronounced deceleration occurs, due to the competitive reduction of the end product S2O62−.  相似文献   

18.
A constructed microbial consortium was formulated from three facultative H2-producing anaerobic bacteria, Enterobacter cloacae IIT-BT 08, Citrobacter freundii IIT-BT L139 and Bacillus coagulans IIT-BT S1. This consortium was tested as the seed culture for H2 production. In the initial studies with defined medium (MYG), E. cloacae produced more H2 than the other two strains and it also was found to be the dominant member when consortium was used. On the other hand, B. coagulans as a pure culture gave better H2 yield (37.16 ml H2/g CODconsumed) than the other two strains using sewage sludge as substrate. The pretreatment of sludge included sterilization (15% v/v), dilution and supplementation with 0.5% w/v glucose, which was found to be essential to screen out the H2 consuming bacteria and ameliorate the H2 production. Considering (1:1:1) defined consortium as inoculum, COD reduction was higher and yield of H2 was recorded to be 41.23 ml H2/g CODreduced. Microbial profiling of the spent sludge showed that B. coagulans was the dominant member in the constructed consortium contributing towards H2 production. Increase in H2 yield indicated that in consortium, the substrate utilization was significantly higher. The H2 yield from pretreated sludge (35.54 ml H2/g sludge) was comparatively higher than that reported in literature (8.1–16.9 ml H2/g sludge). Employing formulated microbial consortium for biohydrogen production is a successful attempt to augment the H2 yield from sewage sludge.  相似文献   

19.
A combined unit of biomass gasifier and tar steam reformer (CGR) was proposed in this study to achieve simultaneous tar removal and increased hydrogen production. Tar steam reforming calculations based on thermodynamic equilibrium were carried out by using Aspen Plus software. Thermodynamic analysis reveals that when selecting appropriate operating conditions, exothermic heat available from the gasifier could sufficiently supply to the heat-demanding units including feed preheaters, steam generator and reformer. The effects of gasification temperature (Tgs), reforming temperature (Tref) and steam-to-biomass ratio (S:BM) on percentages of tar removal and improvement of H2 production were investigated. It was reported that the CGR system can completely remove tar and increase H2 production (1.6 times) under thermally self-sufficient condition. The increase of H2 production is mainly via the water–gas shift reaction.  相似文献   

20.
We report on the visible light-driven hydrogen production from splitting of water molecules by nitrogen-doped TiO2 (N-TiO2) with a rice grain-like nanostructure morphology. The N-TiO2 nanostructures are prepared using sol-gel and electrospinning methods followed by post-annealing of the composite nanofibers. The nanostructures are characterized by microscopy and spectroscopy. First order rate constants for the visible light-assisted photocatalysis in the degradation of methylene blue (MB) dye are found to be 0.2 × 10−3 and 1.8 × 10−3 min−1 for TiO2 and N-TiO2 (5 wt% of nitrogen), respectively. The N-TiO2 utilized in water splitting experiments and evaluated hydrogen (H2) of 28 and 2 μmol/h for N-TiO2 and TiO2, respectively. The improvement may be attributed due to the N-doping and higher surface area as ∼70 m2/g.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号