首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Natronobacterium pharaonis, an aerobic haloalkaliphilic archaebacterium, expresses high concentrations of redox proteins as do alkaliphilic eubacteria. The first redox protein characterized from N. pharaonis was halocyanin [Scharf, B., & Engelhard, M. (1993) Biochemistry 32, 12894-12900], a small blue copper protein. It is a peripheral membrane protein and is conjectured to function in a manner similar to plastocyanin. In the present work, the respiratory chain is further elucidated and the purification and characterization of the most abundant components cytochrome bc and cytochrome ba3 from the membrane fraction are described. The cytochrome bc complex consists of a 14 and an 18 kDa subunit in a 1:1 ratio, with heme c bound to the larger polypeptide. An Fe-S subunit similar to that found in eukaryotic bc complexes has not yet been identified. The second membrane complex carries two different heme groups of the ba3-type as well as copper. It contains two subunits of 36 and 40 kDa. This cytochrome ba3 binds carbon monoxide, a feature common to terminal oxidases. There is no spectroscopic evidence for a second terminal oxidase; hence, under the growth conditions chosen the respiratory chain of N. pharaonis appears to be unbranched. In addition to these cytochromes, a succinate dehydrogenase which is solubilized from the membrane by detergents was isolated. A cytochrome c which was isolated from the cytosol has an unusually high molecular weight and a redox potential of -142 mV. A second cytosolic protein, ferredoxin, was purified to homogeneity. A comparison of the redox potentials of the isolated proteins with those obtained from the native membrane allows the construction of a possible electron transfer chain.  相似文献   

2.
The dependence of the properties of the azurin blue copper site on the nature of the axial ligand at position 121 was tested by site-directed mutagenesis. This residue was substituted for a glutamine, the purported fourth copper ligand in the related protein stellacyanin. M121Q azurin was isolated and purified from Escherichia coli and characterized by spectroscopic methods. The mutant copper site has the ultra-violet-vis and electron paramagnetic resonance (EPR) characteristics of a type I site, but the spectroscopic details differ significantly from wild-type (wt) azurin. The X and S-band EPR spectra of M121Q azurin can be well stimulated with the parameters for stellacyanin, indicating that the copper sites of both proteins in the oxidized state are similar. The midpoint potential of M121Q is 263 mV, 25 mV lower than for wt azurin. The reactivity of the mutant was probed by measuring the electron self exchange rate by nuclear magnetic resonance spectroscopy. The rate was 8 x 10(3) mol-1 s-1, almost two orders of magnitude lower than the value for wt azurin (5 x 10(5) mol-1 s-1). Detailed structural information on the M121Q Cu(II)-site was obtained by X-ray analysis of M121Q azurin crystals at 1.9 A resolution. The histidine and cysteine copper ligand distances and angles in the equatorial plane around the copper are very similar to the wt protein. Gln121 is co-ordinated in a monodentate fashion via its side-chain oxygen atom at a distance of 2.26 A. The distance between copper and the carbonyl group of Gly45 is increased from 3.13 A (wt) to 3.37 A resulting in a distorted tetrahedral N2SO copper co-ordination. The possible significance of these results for the structure of the copper site of stellacyanin, the only small blue copper protein lacking a methionine ligand, is discussed. Conformational changes with respect to the wt azurin are seen in some of the connecting loops between secondary structure elements, in the mutation site and in the beta-strand 2a. The side-chains involved in the hydrophobic patch surrounding His117 are subject to large changes in their conformations. In contrast to wt azurin, the copper site in M121Q azurin undergoes significant structural changes on reduction.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
4.
We report the development of a high-yield heterologous expression system for the copper-containing nitrite reductase from a denitrifying variant of Rhodobacter sphaeroides. Typical yields of wild-type protein are 20 mg L-1, which can be fully loaded with copper. Nitrite reductase contains an unusual blue-green Type 1 copper center with a redox/electron transfer function and a nearby Type 2 center where nitrite binds and is reduced to nitric oxide. The wild-type enzyme was characterized by: (1) its blue-green Type 1 optical spectrum; (2) its EPR spectrum showing rhombic character to its Type 1 center and nitrite perturbation to its Type 2 center; (3) its 247-mV Type 1 midpoint potential which is low relative to other Type 1 centers; and (4) its kinetics as measured by both steady-state and stopped-flow methods. The Type 2 copper reduction potential as monitored by EPR in the absence of nitrite was below 200 mV so that reduction of the Type 2 center by the Type 1 center in the absence of nitrite is not energetically favored. The mutation M182T in which the methionine ligand of Type 1 copper was changed to a threonine resulted in a blue rather than blue-green Type 1 center, a midpoint potential that increased by more than 100 mV above that of the wild-type Type 1 center, and a somewhat reduced nitrite reductase activity. The blue color and midpoint potential of M182T are reminiscent of plastocyanin, but the Type 1 cupric HOMO ground-state electronic g value and copper hyperfine properties of M182T (as well as cysteine and histidine ENDOR hyperfine properties; see next paper) were unchanged from those of the blue-green native Type 1 center. His287 is a residue in the Type 2 region whose imidazole ring was thought to hydrogen bond to the Type 2 axial ligand but not directly to Type 2 copper. The mutation H287E resulted in a 100-fold loss of enzyme activity and a Type 2 EPR spectrum (as well as ENDOR spectra; see next paper) which were no longer sensitive to the presence of nitrite.  相似文献   

5.
Substrate reduction by nitrogenase requires electron transfer from a [4Fe-4S] cluster in the iron (Fe) protein component to an FeMo cofactor in the molybdenum-iron (MoFe) protein component in a reaction that is coupled to MgATP hydrolysis and component protein association and dissociation. An [8Fe-7S] (or P-) cluster in the MoFe protein has been proposed as an intermediate electron-transfer site, although how this cluster functions in electron-transfer remains unclear. In the present work, it is demonstrated that one redox couple of the P-cluster (P2+/1+) undergoes coupled electron and proton transfer, whereas a more reduced couple (P1+/N) does not involve a coupled proton transfer. Redox titrations of the MoFe protein P-cluster were performed, and the midpoint potential of the P2+/1+ couple (Em2) was found to be pH dependent, ranging from -224 mV at pH 6.0 to -348 mV at pH 8.5. A plot of Em2 versus the pH for this redox couple was linear and revealed a change of -53 mV/pH unit, indicating a single protonation event associated with reduction. From this plot, it was concluded that p is <6.0 and p is >8.5 in a proton-modified Nernst equation. In contrast, the midpoint potential for the P1+/N couple (Em1) was found to be -290 mV and was invariant over the pH range 6.0-8.5. These results indicate that the protonated species does not influence either the P1+ or the PN oxidation states. In addition, at physiological pH values, electron transfer is coupled to proton transfer for the P2+/1+ couple. The P-clusters are unique among [Fe-S] clusters in that they appear to be ligated to the protein through a serinate-gammaO ligand (betaSer188) and a peptide bond amide-N ligand (alphaCys88), in addition to cysteinate-S ligands. Elimination of the serinate ligand by replacement with a glycine was found to shift the Em values for both P-cluster couples by greater than +60 mV, however the pH dependence of Em2 was unchanged. These results rule out Ser188 as the protonated ligand responsible for the pH dependence of Em2. The implications of these results in understanding the nitrogenase electron-transfer mechanism are discussed.  相似文献   

6.
In situ scanning tunneling microscopy (STM) of redox molecules, in aqueous solution, shows interesting analogies and differences compared with interfacial electrochemical electron transfer (ET) and ET in homogeneous solution. This is because the redox level represents a deep indentation in the tunnel barrier, with possible temporary electronic population. Particular perspectives are that both the bias voltage and the overvoltage relative to a reference electrode can be controlled, reflected in spectroscopic features when the potential variation brings the redox level to cross the Fermi levels of the substrate and tip. The blue copper protein azurin adsorbs on gold(111) via a surface disulfide group. Well resolved in situ STM images show arrays of molecules on the triangular gold(111) terraces. This points to the feasibility of in situ STM of redox metalloproteins directly in their natural aqueous medium. Each structure also shows a central brighter contrast in the constant current mode, indicative of 2- to 4-fold current enhancement compared with the peripheral parts. This supports the notion of tunneling via the redox level of the copper atom and of in situ STM as a new approach to long-range electron tunneling in metalloproteins.  相似文献   

7.
The rack-induced bonding mechanism of metals to proteins is a useful concept for explaining the generation of metal sites in electron transfer proteins, such as the blue copper proteins, that are designed for rapid electron transfer. The trigonal pyramidal structure imposed by the protein with three strong equatorial ligands (one Cys and two His) provides a favorable geometry for both cuprous and cupric oxidation states. However, the crystal structures of the Met121His mutant of azurin from Alcaligenes denitrificans at pH 6.5 (1.89- and 1.91-A resolutions) and pH 3.5 (2.45-A resolution) show that the preformed metal binding cavity in the protein is more flexible than expected. At high pH (6.5), the Cu site retains the same three equatorial ligands as in the wild-type azurin and adds His121 as a fourth strong ligand, creating a tetrahedral copper site geometry with a green color referred to as 1.5 type. In the low pH (3.5) structure, the protonation of His121 causes a conformational change in residues 117-123, moving His121 away from the copper. The empty coordination site is occupied by an oxygen atom of a nitrate molecule of the buffer solution. This axial ligand is coordinated less strongly, generating a distorted tetrahedral copper geometry with a blue color and spectroscopic properties of a type-1 site. These crystal structures demonstrate that blue copper proteins are flexible enough to permit a range of movement of the Cu atom along the axial direction of the trigonal pyramid.  相似文献   

8.
In order to understand the origins of differences in redox potentials among cupredoxins (small blue type I copper-containing proteins that reversibly change oxidation state and interact with redox partners), we have determined the structures of the native and two mutants (P80A and P80I) of pseudoazurin from Alcaligenes faecalis S-6 in oxidized and reduced forms at resolutions of 2.2 A in the worst case and 1.6 A in the best case. The P80A mutation creates a surface pocket filled by a new water molecule, whereas the P80I mutant excludes this water. Distinct patterns of change occur in response to reduction for all three molecules: the copper position shifts, Met 7 and Pro 35 move, and the relative orientations of residues 81 to 16, 18 to the amide planes of 77 and 86, all change. Systematic changes in the weak electrostatic interactions seen in the structures of different oxidation states can explain the Met 7/Pro 35 structural differences as well as some fluctuating solvent positions. Overall displacement parameters increase reversibly upon reduction. The reduced forms are slightly expanded over the oxidized forms. The geometries of the mutants become more trigonal in their reduced forms, consistent with higher redox potentials (+409 mV for P80A and +450 mV for P80I). Calculations of the differences in redox potentials, using POLARIS, reveal that a water unique to the P80A mutant is required (with correctly oriented hydrogens) to approximate the observed difference in redox potential. The POLARIS calculations suggest that the reduced forms are additionally stabilized through changes in the solvation of the copper center, specifically via the amides of residues 16, 39, 41, 79, and 80 which interact with either Phe 18, Met 86, or Cys 78. The redox potential of P80A is increased largely due to solvation effects, whereas the redox potential of P80I is increased largely due to geometrical effects.  相似文献   

9.
A blue light (cryptochrome) photoreceptor from Arabidopsis, cry1, has been identified recently and shown to mediate a number of blue light-dependent phenotypes. Similar to phytochrome, the cryptochrome photoreceptors are encoded by a gene family of homologous members with considerable amino acid sequence similarity within the N-terminal chromophore binding domain. The two members of the Arabidopsis cryptochrome gene family (CRY1 and CRY2) overlap in function, but their proteins differ in stability: cry2 is rapidly degraded under light fluences (green, blue, and UV) that activate the photoreceptor, but cry1 is not. Here, we demonstrate by overexpression in transgenic plants of cry1 and cry2 fusion constructs that their domains are functionally interchangeable. Hybrid receptor proteins mediate functions similar to cry1 and include inhibition of hypocotyl elongation and blue light-dependent anthocyanin accumulation; differences in activity appear to be correlated with differing protein stability. Because cry2 accumulates to high levels under low-light intensities, it may have greater significance in wild-type plants under conditions when light is limited.  相似文献   

10.
The facultative phototrophic bacterium Rhodobacter capsulatus is capable of growth in a wide range of environmental conditions using a highly branched electron-transfer chain. During respiratory growth of this organism reducing equivalents are conveyed to oxygen via two terminal oxidases, previously called "cyt b410" (cytochrome c oxidase) and "cyt b260" (quinol oxidase). The cytochrome c oxidase was purified to homogeneity from a semiaerobically grown R. capsulatus strain. The purified enzyme consumes oxygen at a rate of 600 s-1, oxidizes reduced equine cyt c and R. capsulatus cyt c2, and has high sensitivity to cyanide. The complex is composed of three major polypeptides of apparent molecular masses 45, 32, and 28 kDa on SDS-PAGE. The 32- and 28-kDa proteins also stain with tetramethylbenzidine, indicating that they are c-type cytochromes. Partial amino acid sequences obtained from each of the subunits reveal significant homology to the fixN, fixO, and fixP gene products of Bradyrhizobium japonicum and Rhizobium meliloti. The reduced enzyme has an optical absorption spectrum with distinct features near 550 and 560 nm and an asymmetric Soret band centered at 418 nm, indicating the presence of both c- and b-type cytochromes. Two electrochemically distinct cyt c are apparent, with redox midpoint potentials (Em7) of 265 and 320 mV, while the low-spin cyt b has an Em7 value of 385 mV. The enzyme binds carbon monoxide, and the CO difference spectrum indicates that CO binds to a high-spin cyt b. Pyridine hemochrome and HPLC analyses suggest that the complex contains 1 mol of heme C to 1 mol of protoheme and that neither heme O nor heme A is present.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Culturing Neurospora crassa in presence of toxic amounts of copper (0.63 mM) resulted in blue coloured mycelia and cell walls. Significant amounts (approximately 45%) of total mycelial copper were associated with cell wall isolates under conditions of copper toxicity. Hence, such blue cell walls were analysed to identify specific ligands involved in copper binding. While decuprification of the blue cell walls with 8-hydroxy quinoline (8 HQ) did not alter their copper binding abilities, similar treatment with EDTA (10 mM) decreased such abilities indicating that EDTA treatment lead to loss of copper binding ligands from cell walls. Treatment of blue cell walls with 8 HQ followed by EDTA resulted in the solubilization of a copper binding protein (relative MW approximately 14 kDa) which was associated with phosphate and carbohydrate moieties. On amino acid analysis, this protein was found to be devoid of free thiol groupings but enriched in acidic and basic amino acids, distinguishing it from classical intracellular metal binding proteins such as metallo-thioneins and phytochelatins that are inducively synthesized under conditions of metal toxicity. The biological significance of the isolated wall-bound copper binding protein, which appears to be a normal constituent of cell walls, is discussed in relation to cytoplasmic metal binding proteins and mechanism(s) adapted by fungi in countering metal toxicity.  相似文献   

12.
In a complex of two electron-transfer proteins, their redox potentials can be shifted due to changes in the dielectric surroundings and the electrostatic potentials at each center caused by the charged residues of the partner. These effects are dependent on the geometry of the complex. Three different docking configurations (DCs) for intracomplex electron transfer between cytochrome f and plastocyanin were studied, defined by 1) close contact of the positively charged region of cytochrome f and the negatively charged regions of plastocyanin (DC1) and by (2, 3) close contact of the surface regions adjacent to the Fe and Cu redox centers (DC2 and DC3). The equilibrium energetics for electron transfer in DC1-DC3 are the same within approximately +/-0.1 kT. The lower reorganization energy for DC2 results in a slightly lower activation energy for this complex compared with DC1 and DC3. The long heme-copper distance (approximately 24 A) in the DC1 complex drastically decreases electronic coupling and makes this complex much less favorable for electron transfer than DC2 or DC3. DC1-like complexes can only serve as docking intermediates in the pathway toward formation of an electron-transfer-competent complex. Elimination of the four positive charges arising from the lysine residues in the positive patch of cytochrome f, as accomplished by mutagenesis, exerts a negligible effect (approximately 3 mV) on the redox potential difference between cyt f and PC.  相似文献   

13.
The kinetics of intramolecular electron transfer between flavin and heme in Saccharomyces cerevisiae flavocytochrome b2 were investigated by performing potentiometric titrations and temperature-jump experiments on the recombinant wild type and Y143F and Y254F mutants. The midpoint potential of heme was determined by monitoring redox titrations spectrophotometrically, and that of semiquinone flavin/reduced flavin (Fsq/Fred) and oxidized flavin (Fox)/Fsq couples by electron paramagnetic resonance experiments at room temperature. The effects of pyruvate on the kinetic and thermodynamic parameters were also investigated. At room temperature, pH 7.0 and I = 0.1 M, the redox potential of the Fsq/Fred, Fox/Fsq, and oxidized heme/reduced heme (Hox/Hred) couples were -135, -45, and -3 mV, respectively, in the wild-type form. Although neither the mutations nor excess pyruvate did appreciably modify the potential of the heme or that of the Fsq/Fred couple, they led to variable positive shifts in the potential of the Fox/Fsq couple, thus modulating the driving force that characterizes the reduction of heme by the semiquinone in the -42 to +88 mV range. The relaxation rates measured at 16 degreesC in temperature-jump experiments were independent of the protein concentrations, with absorbance changes corresponding to the reduction of the heme. Two relaxation processes were clearly resolved in wild-type flavocytochrome b2 (1/tau1 = 1500 s-1, 1/tau2 = 200 +/- 50 s-1) and were assigned to the reactions whereby the heme is reduced by Fred and Fsq, respectively. The rate of the latter reaction was determined in the whole series of proteins. Its variation as a function of the driving force is well described by the expression obtained from electron-transfer theories, which provides evidence that the intramolecular electron transfer is not controlled by the dynamics of the protein.  相似文献   

14.
Phosphatidylinositol-4-phosphate 5-kinase (PIP5K) phosphorylates phosphatidylinositol-4-phosphate to produce phosphatidylinositol-4,5-bisphosphate as a precursor of two second messengers, inositol-1,4,5-triphosphate and diacylglycerol, and as a regulator of many cellular proteins involved in signal transduction and cytoskeletal organization. Despite PIP5K playing such an essential role in a number of physiological processes, much still remains to be made clear about its association with plants. Searching the Arabidopsis expression sequence tag database against already known yeast and mammalian PIP5K cDNAs, we identified two clones which partly encode the same Arabidopsis PIP5K and isolated a corresponding full-length cDNA encoding a protein that we designated AtPIP5K1. Recombinant AtPIP5K1 expressed in Escherichia coli possessed a PIP5K activity in vitro. Due to some structural and biochemical differences, AtPIP5K1 was not categorized as either a type I or type II PIP5K. The expression of the AtPIP5K1 mRNA was induced rapidly by treating Arabidopsis plants with drought, salt and abscisic acid, which suggests that AtPIP5K11 is involved in water-stress signal transduction. These data give evidence for a close link between phosphoinositide signaling cascades and water-stress responses in plants.  相似文献   

15.
The rapid electron-exchange characteristics of metalloproteins adsorbed at a pyrolytic graphite "edge" electrode have been studied by analog dc cyclic voltammetry at scan rates up to 3000 V s-1. The voltammetry of four proteins, azurin (a "blue" copper protein) and three 7Fe ferredoxins, reveals oxidation and reduction peaks that display only modest increases in width and peak separation as the scan rate is raised. This is indicative of a substantially homogeneous population of noninteracting centers which undergo rapid electron exchange with the electrode. Both the Butler--Volmer and Marcus models have been tested. The electrochemical kinetics, as reflected by k0 (the rate at zero overpotential), are too fast to allow the determination of reorganization energies by this method. Nonetheless, the rapid and energetically coherent nature of the electron transfer enables the cyclic oxidation and reduction of protein redox centers to be examined on a time scale sufficiently short to recognize coupled processes occurring in the millisecond time domain, which are characteristic of the protein under investigation. Two of the ferredoxins display increasingly asymmetric voltammetry as the scan rate is increased, which is attributed to the coupling of electron transfer to conformational (or orientational) changes. For azurin, the use of higher electrolyte concentrations enables studies to be made at scan rates up to 3000 V s-1, from which a standard electron-transfer rate constant in the region of 5000 s-1 is obtained. At these high scan rates, azurin still shows very symmetrical voltammograms but with peak shapes displaying a more gradual decrease in current, at increasing overpotential, than is predicted using realistic values of the reorganization energy. The ability to measure even faster rate constants and access coupled reactions occurring in shorter time domains is likely to be limited by complex processes occurring on the graphite surface.  相似文献   

16.
The isolation of a maize cDNA clone that encodes a membrane spanning protein kinase related to the self-incompatibility glycoproteins (SLG) of Brassica and structurally similar to the growth factor receptor tyrosine kinases has recently been reported. Three distinct receptor-like protein kinase (RLK) cDNA clones from Arabidopsis thaliana have now been identified. Two of the Arabidopsis RLK genes encode SLG-related protein kinases but have different patterns of expression: one is expressed predominantly in rosettes while the other is expressed primarily in roots. The third RLK gene contains an extracellular domain that consists of 21 leucine-rich repeats that are analogous to the leucine-rich repeats found in proteins from humans, flies and yeast. The Arabidopsis leucine-rich gene is expressed at equivalent levels in roots and rosettes. These results show that there are several genes in higher plants that encode members of the receptor protein kinase superfamily. The structural diversity and differential expression of these genes suggest that each plays a distinct and possibly important role in cellular signaling in plants.  相似文献   

17.
18.
The Rieske protein II (Schmidt et al., 1996, FEBS Lett. 388, 43-46) from the thermoacidophilic crenarcheon Sulfolobus acidocaldarius (DSM 639) was expressed in E. coli cells. The full length protein was strictly bound to the E. coli membranes and could only be removed by detergent treatment indicating the presence of a membrane anchor. The iron sulfur cluster was correctly inserted into a fraction of the full length protein and much more effectively into a soluble form created by the deletion of the 45 N-terminal amino acids. The soluble form of the protein displayed the typical spectroscopic properties of a respiratory Rieske protein. The midpoint potential was +375 mV determined by CD redox potentiometry. The presented data demonstrate that the structure of the recombinant protein is very similar or identical to the authentic protein making this a powerful model system for the studies of Rieske proteins by site directed mutagenesis.  相似文献   

19.
A combination of structural, thermodynamic, and transient kinetic data on wild-type and mutant Anabaena vegetative cell ferredoxins has been used to investigate the nature of the protein-protein interactions leading to electron transfer from reduced ferredoxin to oxidized ferredoxin:NADP+ reductase (FNR). We have determined the reduction potentials of wild-type vegetative ferredoxin, heterocyst ferredoxin, and 12 site-specific mutants at seven surface residues of vegetative ferredoxin, as well as the one- and two-electron reduction potentials of FNR, both alone and in complexes with wild-type and three mutant ferredoxins. X-ray crystallographic structure determinations have been carried out for six of the ferredoxin mutants. None of the mutants showed significant structural changes in the immediate vicinity of the [2Fe-2S] cluster, despite large decreases in electron-transfer reactivity (for E94K and S47A) and sizable increases in reduction potential (80 mV for E94K and 47 mV for S47A). Furthermore, the relatively small changes in Calpha backbone atom positions which were observed in these mutants do not correlate with the kinetic and thermodynamic properties. In sharp contrast to the S47A mutant, S47T retains electron-transfer activity, and its reduction potential is 100 mV more negative than that of the S47A mutant, implicating the importance of the hydrogen bond which exists between the side chain hydroxyl group of S47 and the side chain carboxyl oxygen of E94. Other ferredoxin mutations that alter both reduction potential and electron-transfer reactivity are E94Q, F65A, and F65I, whereas D62K, D68K, Q70K, E94D, and F65Y have reduction potentials and electron-transfer reactivity that are similar to those of wild-type ferredoxin. In electrostatic complexes with recombinant FNR, three of the kinetically impaired ferredoxin mutants, as did wild-type ferredoxin, induced large (approximately 40 mV) positive shifts in the reduction potential of the flavoprotein, thereby making electron transfer thermodynamically feasible. On the basis of these observations, we conclude that nonconservative mutations of three critical residues (S47, F65, and E94) on the surface of ferredoxin have large parallel effects on both the reduction potential and the electron-transfer reactivity of the [2Fe-2S] cluster and that the reduction potential changes are not the principal factor governing electron-transfer reactivity. Rather, the kinetic properties are most likely controlled by the specific orientations of the proteins within the transient electron-transfer complex.  相似文献   

20.
The expression of rusticyanin in Escherichia coli and a number of mutants for Ser86 is reported. Mutations of Ser86 to Asn, Asp, Gln, and Leu were undertaken as this is an Asn residue in other structurally characterized cupredoxins, and it has been suggested that this may be partly responsible for the high redox potential (680 mV) and extreme acid stability of rusticyanin. N-Terminal sequence analysis, together with other biochemical and spectrochemical characterization, shows that the recombinant wild-type protein is indistinguishable from native rusticyanin. All four mutants retain the rhombic nature of the EPR spectra and a significant absorption maximum at approximately 450 nm, thus confirming that the overall geometry of the Cu ligands is essentially maintained. The oxidized form of all four mutants is less acid stable than the wild-type protein, although the detailed mechanism of lability varies. Ser86Leu readily loses copper as the pH is reduced from 4.0, but the protein does not denature. A significant proportion (approximately 30%) of Ser86Gln is denatured at lower pH values, whereas Ser86Asn and Ser86Asp are stable as the reduced (CuI) protein. The redox potential also varies by approximately 110 mV (590-702 mV) upon these single point mutations, thus providing direct experimental support to the idea that this residue is at least in part responsible for the acid stability and the highest redox potential of rusticyanin in the cupredoxin family.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号