首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The performance of lift-hyperlayer asymmetrical flow field-flow fractionation using rapid elution conditions was tested through the separation of standard polystyrene latex particles of diameters from 2 to 20 microm. Optimization of flowrates was studied not only in order to obtain efficient and rapid separation, but also to work under conditions of various shape and steepness of the axial flow velocity gradient. Using extreme flow conditions, the five widely spaced particle sizes, 20.5-, 15.0-, 9.7-, 5.0-, and 2.0-microm diameter, could be resolved in 6 min, whereas for the narrower size range of 20.5-5.0 microm, 1 min was enough. The size selectivity in the size range 9.7-2.0 microm was studied as a function of flowrates and particle size and was found to be constant. A particle trapping device made it possible to separate particles of sizes > 10 microm, which has previously proven to be difficult in asymmetrical channels.  相似文献   

2.
We report on the feasibility of deriving microphysical parameters of bimodal particle size distributions from Mie-Raman lidar based on a triple Nd:YAG laser. Such an instrument provides backscatter coefficients at 355, 532, and 1064 nm and extinction coefficients at 355 and 532 nm. The inversion method employed is Tikhonov's inversion with regularization. Special attention has been paid to extend the particle size range for which this inversion scheme works to approximately 10 microm, which makes this algorithm applicable to large particles, e.g., investigations concerning the hygroscopic growth of aerosols. Simulations showed that surface area, volume concentration, and effective radius are derived to an accuracy of approximately 50% for a variety of bimodal particle size distributions. For particle size distributions with an effective radius of < 1 microm the real part of the complex refractive index was retrieved to an accuracy of +/- 0.05, the imaginary part was retrieved to 50% uncertainty. Simulations dealing with a mode-dependent complex refractive index showed that an average complex refractive index is derived that lies between the values for the two individual modes. Thus it becomes possible to investigate external mixtures of particle size distributions, which, for example, might be present along continental rims along which anthropogenic pollution mixes with marine aerosols. Measurement cases obtained from the Institute for Tropospheric Research six-wavelength aerosol lidar observations during the Indian Ocean Experiment were used to test the capabilities of the algorithm for experimental data sets. A benchmark test was attempted for the case representing anthropogenic aerosols between a broken cloud deck. A strong contribution of particle volume in the coarse mode of the particle size distribution was found.  相似文献   

3.
Wu X  Grehan G  Cen K  Ren KF  Wang Q  Luo Z  Fang M 《Applied optics》2007,46(36):8600-8608
A near backscattered laser Doppler system was presented to carry out velocity and size distribution measurements for irregular particles in two-phase flows. The technique uses amplitudes of particles Doppler signals to estimate the particle size distribution in a statistical manner. Holve's numerical inversion scheme is employed to unfold the dependence of the scattered signals on both particle trajectory and orientation through the measurement volume. The performance and error level of the technique were simulated, and several parameters including the number of particle samples, the fluctuation of irregular particle response function, inversion algorithms, and types of particle size distribution were extensively investigated. The results show that the size distributions for those irregular particles even with strong fluctuations in response function can be successfully reconstructed with an acceptable error level using a Phillips-Twomey-non-negative least-squares algorithm instead of a non-negative least-squares one. The measurement system was then further experimentally verified with irregular quartz sands. Using inversion matrix obtained from the calibration experiment, the average measurement error for the mixing quartz sands with a size range of 200-560 microm are found to be about 23.3%, which shows the reliability of the technique and the potential for it to be applied to industrial measurement.  相似文献   

4.
Johns M  Liu H 《Applied optics》2003,42(16):2968-2971
Recent studies have shown that the slope of logarithmic scattering spectroscopy of a turbid medium is related to the sizes of the scattering particles within the turbid medium. Mie theory can be used to generate a logarithmic plot of the reduced-scattering coefficient versus wavelength. According to Nilsson et al. [Appl. Opt. 37, 1256 (1998)], the slope value of a linear fit of the logarithmic scattering spectroscopy between 600 and 1050 nm can be used for direct determination of particle size. We performed similar calculations using the Rayleigh-Gans approximation and obtained an analogous overall shape with additional sinusoidal features. Our calculations indicate a possible relationship between the slope and the particle size when the size is used to calculate the slope, namely, in the forward calculation. However, because of the sinusoidal pattern, the inverse calculation to obtain the particle size from the slope may be applied only for particles with a radius of <0.13 microm in combination with 650-1050-nm light. Caution should be exercised when inverse calculation is performed to determine the scattering particle sizes in the range of radii >0.13 microm, with the slope of logarithmic scattering spectroscopy within 650-1050 nm.  相似文献   

5.
Wang JC  Hencken KR 《Applied optics》1986,25(5):653-657
We have developed a technique using light scattered from individual particles in the near-forward direction to measure particle size in the range of 10-200 microm. This technique uses the Mie scattering theory to relate the measured light intensity to particle size based on calibration techniques employing pinholes and water droplets of known size. We have applied a unique two-color optical arrangement to minimize the edge effect which can cause incorrect size measurements for particles that pass through the edge of the laser beam focal volume. In this paper we describe our experimental technique and the results of size measurements obtained with this technique for water droplets and pulverized coal particles.  相似文献   

6.
The objective of this research was to better understand cadmium (Cd) mobility in an organic-rich, boreal soil. Cadmium was selected for the study because of its tendency to be more mobile in soils than other heavy metals, such as lead or mercury. The release of metals from soil is a concern for northern regions where soils are gradually warming, resulting in an increased rate of natural organic matter (NOM) decomposition and soil erosion. Soil samples were collected from three principle soil horizons at a research site in the Caribou-Poker Creeks Research Watershed (CPCRW), near Fairbanks, Alaska. A dilute Cd solution was added to the soil and the soil solution was allowed to mix for 72 h. The soil solution was then passed through a 75 microm sieve and a 0.3 microm filter. Particulate samples retained on the sieve and filter were analyzed by atomic absorption (AA) to determine how much Cd was bound to the different size particles. The NOM in each particle size fraction was analyzed by pyrolysis-gas chromatography/mass spectrometry (py-GC/MS) to determine the nature of the NOM present. Our results showed that the concentration of Cd was almost equal for the different particle sizes in each horizon. That is, the amount of Cd associated with particles larger than 75 microm was nearly the same, on a per mass basis, as the amount of Cd associated with particles ranging in size between 0.3 and 75 microm. Since the mass ratio of Cd to solids normally increases as particle size decreases, this result suggested unusual sorption behavior. Based on the Cd distribution among the particles and the percentage of NOM in each particle size range, it is believed that NOM is a primary factor influencing the sorption behavior of Cd in the boreal soil tested.  相似文献   

7.
Band dispersion was studied and the retention thermodynamics addressed for insulin and angiotensin II on C18 silica monoliths with a bimodal pore size distribution, covering linear mobile-phase velocities up to 1 cm/s and different temperatures. These data suggest that the influence of average column pressure on retention (between 0 and 10 MPa) is not negligible. Plate height curves were interpreted with the van Deemter equation by assuming an independent contribution from mechanical and non-mechanical dispersion mechanisms. This analysis revealed diffusion-limited mass transfer in the mesoporous silica skeleton which, in turn, allowed us to calculate an equivalent dispersion particle diameter (d(disp) = 3 microm) using the C-term parameter of the van Deemter equation. The resulting superposition of reduced plate height curves for monolithic and particulate beds confirmed that this view presents an adequate analogy. The macroporous interskeleton network responsible for the hydraulic permeability of a monolith was translated to the interparticle pore space of particulate beds, and an equivalent permeability particle diameter (d(perm) = 15 microm) was obtained by scaling based on the Kozeny-Carman equation.  相似文献   

8.
Orientation-averaged light-extinction characteristics of compound sulfate-carbon-soot particles have been analyzed with a discrete-dipole algorithm (DDSCAT code) for r1/r2 (ratio of primary-particle radius to secondary-particle radius) in the range 7 to 1 and for wavelengths from 0.4 to 0.8 microm. It was found that compound particles above a particle radius of approximately 0.2 microm exhibit light-extinction characteristics that closely match those of a pure sulfate particle. The shielding of the carbon particle by the primary particle apparently reduces the absorption effect of the soot particle over the range of all possible orientations. In light of the fact that soot particles tend to be small in comparison with host sulfate particles, the light-extinction characteristics of compound particles are dictated by the optical properties of the host particles. This result has been applied for aerosol aggregates with log-normal size distributions. For r1/r2 > or = 2 the aggregate extinction coefficient of a group of compound particles remains within 12% of that of a group consisting only of sulfate particles. This allows for effective calculation of the overall aerosol light extinction on the basis of the optical and geometrical properties of the constituent particles without having to include a compound-geometry effect.  相似文献   

9.
Large perfusive silica beads (particle size 110 microm, through pore approximately 2 microm) held in place by the keystone effect were used as single-particle frits for the manufacture of particulate packed capillary columns. High-quality capillary electrochromatographic separations of a standard test mixture of alkylbenzenes were obtained over the full voltage range of 5-30 kV, with no requirement for pressurization. Excellent robustness was demonstrated by the reproducibility of migration times, peak efficiencies, and resolution during 100 consecutive runs at the highest voltage (30 kV) without thermostating and pressurization. Superior performance relative to traditional sinter-fritted columns is ascribed to the heat-free fritting process and short frit length of approximately 110 microm.  相似文献   

10.
Zhou J  Moshary F  Gross B  Ahmed S 《Applied optics》2006,45(26):6876-6885
The Twomey iterative method has been applied to the retrieval of hydrosol microphysical properties. In particular, we focused on the retrieval of single and multimode particle size distributions from both simulated and experimental backscattering spectra in the 400-800 nm wavelength range. Assuming a known refractive index, both single-mode and multimode distributions were successfully retrieved through the introduction of an initial distribution biased toward larger particles. The simulation results were experimentally verified with standard polystyrene particles suspended in water within the diameter range of 0.2-2 microm for both narrow and broad monomodal distributions as well as more complicated multimode distributions. Finally, the technique was extended to the retrieval of an unknown refractive index.  相似文献   

11.
The method described here cannot fully replace the analysis of large columns by small test columns (microcolumns). The procedure, however, is suitable for speeding up the determination of adsorption parameters of dye onto the adsorbent and for speeding up the initial screening of a large adsorbent collection that can be tedious if a several adsorbents and adsorption conditions must be tested. The performance of methylene blue (MB), a basic dye, Cibacron reactive black (RB) and Cibacron reactive yellow (RY) was predicted in this way and the influence of initial dye concentration and other adsorption conditions on the adsorption behaviour were demonstrated. On the basis of the experimental results, it can be concluded that the adsorption of RY onto manganese oxides modified diatomite (MOMD) exhibited a characteristic "S" shape and can be simulated effectively by the Thomas model. It is shown that the adsorption capacity increased as the initial dye concentration increased. The increase in the dye uptake capacity with the increase of the adsorbent mass in the column was due to the increase in the surface area of adsorbent, which provided more binding sites for the adsorption. It is shown that the use of high flow rates reduced the time that RY in the solution is in contact with the MOMD, thus allowing less time for adsorption to occur, leading to an early breakthrough of RY. A rapid decrease in the column adsorption capacity with an increase in particle size with an average 56% reduction in capacity resulting from an increase in the particle size from 106-250 microm to 250-500 microm. The experimental data correlated well with calculated data using the Thomas equation and the bed depth-service time (BDST) equation. Therefore, it might be concluded that the Thomas equation and the BDST equations can produce accurate predication for variation of dye concentration, mass of the adsorbent, flow rate and particle size. In general, the values of adsorption isotherm capacity obtained in a batch system show the maximum values and are considerably higher than those obtained in a fixed-bed.  相似文献   

12.
Pool scrubbing occurring in the containment of a nuclear reactor is an important mechanism for radioactive particle removal. In this article, an approximate analytical solution to the equation of particle removal with any possible combination of removal processes is suggested. Assuming that the particle size distribution can be approximated by a log-normal function, the reduction of total particle number and mass, and the changes in average particle size and polydispersity are expressed as explicit functions of their initial values, time, and the removal mechanism parameters. The solution is then applied to a pool scrubbing problem as an application example. The approximate solution derived in this study shows good agreement with the exact solution. The error, caused by an approximation for the slip correction factor, is potentially large only for the intermediate-size particles. However, the absolute error still remains small because the particle removal rate is minimum in that size range. The methodology adopted and the solution derived in this paper will be useful when only particle size distribution parameters are available without full information of whole size distribution.  相似文献   

13.
Pharmaceutical inhalers are often used to treat pulmonary diseases. Only active pharmaceutical ingredient (API) particles from these inhalers that are less than approximately 5 microm are likely to reach the lung and be efficacious. This study was designed to investigate the impact of micronized API particle size on the aerodynamic particle size distribution (PSD) profile and the particle size stability of a suspension metered dose inhaler (MDI) containing propellant HFA-227 (1,1,1,2,3,3,3 heptafluoropropane) and a corticosteroid. The median API particle size ranged from 1.1 microm to 1.8 microm (97% to 70% of particles <3 microm, respectively). This study showed that increasing the particle size of the API used to manufacture a suspension MDI product increased the aerodynamic PSD of the MDI product. Furthermore, upon storage of the MDI product under temperature cycling conditions, samples containing larger-size API particles were less stable with respect to their aerodynamic PSD than those with smaller-size API particles. It was found that size-dependent particle growth and/or aggregation of the suspended API may be occurring as a result of temperature cycling. In conclusion, this study has shown that the particle size of the raw API impacts the properties and stability of the emitted aerosol spray. Based on the findings from this study, it is recommended that the API particle size be carefully controlled in order to meet specifications set for the finished MDI product.  相似文献   

14.
Bissonnette LR 《Applied optics》1996,35(33):6449-6465
A multiple-scattering lidar equation is derived from a phenomenological representation of the scattering processes. The contributions are separated into the unscattered, singly scattered, and multiply scattered illumination of the scattering volume, a single backscattering reflection from that volume, and the unscattered and multiply scattered propagation back to the receiver. The equation is obtained in the form of analytic expressions that explicitly show the signal dependence on the extinction coefficient, the effective particle size, the range, and the receiver field of view. Consistent agreement is found with Monte Carlo calculations and published laboratory measurements. Numerical simulations demonstrate that measurements made at three or more fields of view can be inverted to solve for the extinction coefficient and the effective particle radius. The multiple scatterings taken into account in the proposed equation are the small-angle diffraction scatterings; the wide-angle scatterings caused by refraction and reflection are considered lost, except for one backscattering at an angle close to 180°. Consequently, the equation is applicable to cases in which the projection of the lidar receiver field of view on the cloud is of the order of the angular width of the diffraction peak of the phase function times the penetration depth into the cloud.  相似文献   

15.
Continuous grinding kinetics of Ethenzamide powder, as a model active pharmaceutical ingredient (API) was investigated by fluidized-bed jet-milling. Because the oversize fractions after the classification were well fitted by a modified Rosin-Rammler distribution function, an equation of grade efficiency curve was obtained, which was also characteristic of API. A continuous grinding model was developed on the basis of a batch model by using 1st Kapur function relating grinding rate, the grade efficiency curve, and the overall process flow model consisting of grinding, classification, and mixing zones. The residual ratio obtained was well fitted to the experimental results except for the particle size range smaller than 4 microm and larger than 100 microm. Furthermore, because the volume of the active grinding zone adopted as the fitting parameter was found to be 5 cm3 in all experiments and the value was considered to be appropriate dimensionally, this result supports the reliability of the model.  相似文献   

16.
A method of obtaining particle size and concentration information, from ultrasonic transducer measurements of particle-wall interactions in a particle laden fluid, is presented. A mathematical model of the flexural vibrations of the vessel wall due to the particle impact is constructed. The key component of this model is the derivation of an analytic expression for the impact force amplitude. An analytic expression for the power spectrum is then obtained that shows its explicit dependency on the system parameters. This spectrum is then integrated over a specific frequency range and a comparison with experimental results is reported.  相似文献   

17.
A study was conducted on the adsorption kinetics of diuron and amitrole from aqueous solutions on activated carbons of different particle sizes and on an activated carbon fiber. Different kinetic models were applied to the experimental results obtained. A pseudo-second-order rate equation fitted the adsorption kinetics data better than a pseudo-first-order rate equation. Amitrole showed faster adsorption kinetics compared with diuron because of the smaller size of the former herbicide, despite its lower driving force for adsorption. Both reaction rate constants increased when the particle size decreased. The activated carbon fiber and the activated carbon of smallest particle size (0.03 mm) showed similar adsorption kinetics. The intraparticle diffusion rate constant increased with higher initial concentration of herbicides in solution and with lower particle size of the adsorbent. This is because the rise in initial concentration increased the amount adsorbed at equilibrium, and the reduction in particle size increased the number of collisions between adsorbate and adsorbent particles. Demineralization of the activated carbon with particle size of 0.5mm had practically no effect on the adsorption kinetics.  相似文献   

18.
由 Mie 散射光强反演颗粒粒度分布的一种改进正则化法   总被引:3,自引:0,他引:3  
基于Mie散射的激光粒度仪广泛地应用在颗粒粒度测量中,其中由光强分布演算出粒度分布的计算方法一直是关注的热点。此反演问题属于第一类Fredholm算子方程,具有不适定性,难以得出准确的稳定解,需要用高效的数值算法。本文提出一种应用于该类仪器颗粒粒度分布反演问题的改进正则化法,采用广义交叉验证法(GCV)来选择正则参数,并引入松弛技术,将迭代值加工成一种松弛值以改善精度,得出了稳定的正则拟解(近似解)。经标准颗粒的验证和计算机模拟证实,此算法是可行和有效的。  相似文献   

19.
Landon  G.  Lewis  G.  Boden  G. F. 《Journal of Materials Science》1977,12(8):1605-1613
The tensile strengths of a particulate-filled rigid polyurethane resin are presented at varying volume fractions and a wide range of particle sizes. These results are compared with exisiting theories of the strength of particulate-filled composite systems. A linear relationship is proposed to exist between the mean particle diameter and the tensile strength at a given volume fraction. A method of normalizing data is presented which removes the stress-concentration effects of finite particle sizes and allows comparison of the data with a simple equation relating tensile strength and volume fraction. The effects of particle size and volume fraction in relation to crack propagation are discussed, and the proposed method of analysis is shown to give similar results when applied to published data.  相似文献   

20.
The single-scattering properties of ice particles in the near- through far-infrared spectral region are computed from a composite method that is based on a combination of the finite-difference time-domain technique, the T-matrix method, an improved geometrical-optics method, and Lorenz-Mie theory. Seven nonspherical ice crystal habits (aggregates, hexagonal solid and hollow columns, hexagonal plates, bullet rosettes, spheroids, and droxtals) are considered. A database of the single-scattering properties for each of these ice particles has been developed at 49 wavelengths between 3 and 100 microm and for particle sizes ranging from 2 to 10,000 microm specified in terms of the particle maximum dimension. The spectral variations of the single-scattering properties are discussed, as well as their dependence on the particle maximum dimension and effective particle size. The comparisons show that the assumption of spherical ice particles in the near-IR through far-IR region is generally not optimal for radiative transfer computation. Furthermore, a parameterization of the bulk optical properties is developed for mid-latitude cirrus clouds based on a set of 21 particle size distributions obtained from various field campaigns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号