首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In order to investigate the evolution of oxide film on T91 steel, oxidation tests were conducted in water vapor atmosphere at 750 °C. The phase compositions and microstructures of the oxide scales for early stage oxidation were investigated by using glancing angle XRD and SEM equipped with EDS. The results showed that during the initial oxidation stage Cr-rich oxide film formed and then it covered the sample surface rapidly. The initial Cr-rich oxide film was mainly composed of FeCr2O4, (Fe,Cr)2O3 and Fe2O3. This oxide film acted as a barrier against outward diffusion of iron and inward diffusion of oxygen. During the initial oxidation stage, chromium in the sample surface was consumed gradually, and then a large amount of iron ions penetrated the oxide film and diffused rapidly to the sample surface, resulting in forming an outer “non-protective” Fe2O3 layer.  相似文献   

2.
Colored oxide films that form on ferritic stainless steel in a high-temperature, oxidizing environment and correspond to different chemical compositions can cause a deterioration of pitting resistance and corrosion performance. Herein, optical spectroscopic and electrochemical techniques have been used to reveal the relationship between color, chemical composition, and corrosion resistance of oxide films formed in the temperature range from 400°C to 800°C for 30 min and at 800°C for 10, 20, 30, and 60 min. The substrate with a thin and dense passivation film leads to a low pitting potential but high corrosion resistance. Oxide films of yellowish or brownish color formed below 600°C are mainly iron oxides, which correspond to low corrosion resistance. No passivation characteristics can be observed for polarization curves of oxide films formed at 500°C and 600°C. The color of oxide films varies from blue to dark gray with the increase of oxidation time at 800°C. Corrosion resistance changes with different proportions of Fe3O4, Cr2O3, and FeCr2O4. The gray oxide films formed at 800°C for 30 min exhibit the lowest pitting susceptibility and the highest corrosion resistance.  相似文献   

3.
At 800 and 900°C, 10 vol.-%H2O in air has little effect on the AISI 316L stainless steel oxidation under isothermal and cyclic conditions. The oxide scale is composed of Cr2O3 with a small amount of Mn1·5Cr1·5O4 at the external interface. Results show that water molecules or protons can modify the diffusion process in the scale and lower the oxidation rate. At 1000°C, a deleterious effect of water vapour on the scale structure is observed. In situ X-ray diffraction was used to analyse the oxide formation on AISI 316L specimens during isothermal oxidation at 1000°C in moist air. Results show that the breakaway oxidation is due to the iron oxidation starting after 31 h oxidation. This leads to an external Fe2O3 scale growth and an internal multilayered FeCr2O4 scale formation. In wet air, thermal cycling conditions lead to continuous weight losses at 1000°C, whereas the scale remains adherent in dry air.  相似文献   

4.
Abstract

Chromia forming steels are excellent candidates to resist to high temperature oxidising atmospheres because they form protective oxide scales. To understand the oxidation mechanisms of the AISI 304 stainless steel in air at 800°C, in situ X-ray diffraction (XRD) has been used not only during high temperature oxidation, but also during and after cooling. The in situ XRD analyses carried out during high temperature AISI 304 steel oxidation in air at 800°C reveal the growth of iron containing oxides such as haematite Fe2O3 and iron chromite FeCr2O4, after 35 h of the oxidation test, whereas the initial nucleation of the oxide layer shows the single growth of chromia. Iron containing oxides develop over the initial layer and these oxides appear to be poorly adherent and spall off during cooling between 200 and 50°C. Protection against high temperature oxidation would be increased when the initial nucleation of manganese spinel compound is delayed in the oxide scale.  相似文献   

5.
Oxidation of Super 304H steel in supercritical water at 600°C and 25?MPa was investigated, for the oxidation time of up to 1000?h. The oxidation kinetics approximately followed a parabolic law. The composition and microstructure of the oxide were investigated using the SEM equipped with EDS, EBSD and XRD. The phase compositions of the oxide evolve with increasing time. Cr2O3 was present at the initial stage and not detected while Fe2O3 appeared at longer time. EBSD indicated that continuous Cr2O3 formed at the interface of oxide and matrix for HR3C at 600°C for 40?h but only scattered Cr2O3 can be observed for 200?h. After the formation of a thin Fe–Cr–Ni oxide film on the Super 304H steel surface, the Fe-rich outer nodular oxide begins to grow and forms a continuous layer after 1000?h. The growth process of Super304H steel in supercritical water was discussed.  相似文献   

6.
The oxidation of the 304-type (Fe18Cr10Ni) austenitic stainless steel was investigated in the temperature range 400–600 °C in 5% O2 and 5% O2 + 40% H2O. Exposure time was up to 1 week. Prior to exposure, the polished samples were coated with 0.1 mg/cm2 KCl. Uncoated samples were also exposed and used as references. The oxidized samples were analyzed by gravimetry and by ESEM/EDX, XRD, IC and AES. The results show that KCl is strongly corrosive. Corrosion is initiated by the reaction of KCl with the chromia-containing oxide that normally forms a protective layer on the alloy. This reaction produces potassium chromate particles, leaving a chromium-depleted oxide on the alloy surface. At 500 and 600 °C this results in rapid oxidation, resulting in the formation of a thick scale consisting of a mixture of hematite, spinel oxide ((Fe,Cr,Ni)3O4) and K2CrO4. The thick scale is poorly protective and permeable to e.g. chloride ions. The KCl-induced corrosion of alloy 304L in dry O2 and in an O2 + H2O mixture increases strongly with temperature in the range 400–600 °C. The strong temperature dependence is explained partly by the temperature dependence of the chromate-formation reaction and partly by the ability of the chromium-depleted oxide to protect the alloy at low temperature. At 400 °C, the oxide was still protective after 168 h.  相似文献   

7.
《Corrosion Science》1986,26(7):537-545
Laser Raman spectroscopy (LRS) has been used to examine the composition of 0.3–2 μm thick scales formed on the 20Cr25NiNb stabilized stainless steel during oxidation, at 600–950°C, in CO2 and in CO2 + 4%CO + 350 vpm CH4 + 300 vpm H2O + 400 vpm H2. All the scales contained iron rich spinel oxides, except in carbon dioxide at 600°C, where Fe2O3 predominated. This difference was responsible for the greater attack of the stainless steel at 600°C in carbon dioxide than in the mixed gas environment. Increasingly at ≥800°C the spinel composition was modified by manganese incorporation and Cr2O3 was also a major component of the scales formed in both environments. The principal scale constituents identified by LRS accord both with thermodynamic predictions and current understanding of scale development on the 20/25/Nb stainless steel.  相似文献   

8.
Hussain  N.  Qureshi  A. H.  Shahid  K. A.  Chughtai  N. A.  Khalid  F. A. 《Oxidation of Metals》2004,61(5-6):355-364
A commercial superalloy HASTELLOY C-4, was studied to evaluate its resistance to oxidation at elevated temperatures. Specimens were exposed to steam from 600° to 1200°C for 1–400 hr. The reaction kinetics of oxidation were determined, and the morphology of the oxide scales was investigated by optical and scanning-electron microscopy. It was observed that C-4 exhibited excellent oxidation resistance at all temperatures under study. This behavior is due to the formation of a compact and adherent oxide. The oxides formed during oxidation were identified by X-ray diffraction. The oxides observed were mainly Cr2O3, NiCr2O4, NiCrMnO4, FeCr2O4 and (Cr, Fe)2O3.  相似文献   

9.
Microstructure characterization of corrosion behavior of an alumina forming austenitic (AFA) steel exposed to supercritical carbon dioxide was conducted at 450–650 °C and 20 MPa. At low temperature and short exposure times, the oxidation kinetics were parabolic and the oxide scales were mainly composed of protective and continuous Al2O3 and (Cr, Mn)-rich oxide layers. As the temperature and exposure time increased, the AFA steel gradually suffered breakaway oxidation and its oxide scales showed a multilayer structure mainly composed of Fe3O4, (Cr, Fe)3O4, NiFe/FeCr2O4/Cr2O3/Al2O3, FeCr2O4/Al2O3, and NiFe/Cr2O3/Al2O3, in sequence. The corrosion mechanism based on the microstructure evolution is discussed in detail.  相似文献   

10.
The growth and degradation of the oxide scale on modified 9Cr–1Mo ferritic steel was studied at 1123 K using a thermogravimetric balance by employing the “transient-mass-gain method” in conjunction with the adaptation of a cyclic-oxidation procedure. The total duration of the oxidation was 1000 h. The experiment revealed that the cracking of the scale was initiated when the average thickness was 72 μm. Spallation occurred when the average thickness was 75 μm. The rate of spallation was found to be enhanced as the scale thickens and attained a higher rate after 90 μm. The rate constants for the different stages of oxidation were found to be different. The specimen was examined by SEM, EDS and XRD. The scale morphology revealed outwardly protruded growth, a uniform adherent oxide layer and a spalled region. Four oxide phases were identified; Cr2O3, Fe2O3, (FeCr)2O3 and FeCr2O4. The spall contained more (FeCr)2O3 whereas the adherent scale was more FeCr2O4.  相似文献   

11.
The 4509 alloy (Fe?C18Cr?CNb?CTi) was oxidised in dry and wet air in the 800?C1000 °C temperature range. Results showed that the formation of a chromia layer acts as a good diffusion barrier under isothermal conditions at 800 and 900 °C, under 7.5 vol.% water vapour and dry air. Nevertheless, a breakaway is generally observed at 1000 °C, under wet air 7.5 vol.% H2O. It is proposed that the oxidant H+/OH? species react at the internal interface with iron in the chromium-depleted alloy zone. Wüstite reacts with Cr2O3 to form FeCr2O4. Outward iron diffusion leads to Fe3O4 and Fe2O3 formation. The chromia scale was consumed by reaction with wüstite, but chromia also internally forms owing to a chromium oxidation process with the inner chromium-rich alloy area.  相似文献   

12.
The application of stainless steel at temperatures above 973 K is rendered difficult by the chromium loss due to generation of volatile CrO3 species and the consequent reduction in the capacity to maintain protective scale. We have attempted a method to circumvent this problem by modifying the surface. The surface was modified by three techniques each suiting a particular application. The first two methods involved aluminizing the surface by physical vapor deposition as the initial step. The pre-treatments were carried out in two ways viz. (i) high temperature diffusion-annealing and (ii) laser annealing of the surface. In the third method the specimen was modified by ion-nitriding. The oxidation behavior of these modified steels was compared with stainless steel in the as-received condition to exactly gauge the effect of surface modification. The oxidation experiment was carried out at 1123 K for 3.6 Ms. The oxidation was interrupted at specific time intervals to examine the mass change of the specimen and mass of the spalled oxide. The results indicated that aluminizing followed by heat-treatment and laser-treatment showed significant improvement in the adherence of the scale. On the other hand the bare and nitrided specimens showed similar behavior characterized by intermittent spallation and poor adherence. Nitriding resulted in the increase in the surface hardness. The post-oxidation examinations were carried out using SEM, EDAX and GIXRD. The uncoated specimen showed the presence of uniform oxide layer and contained oxides of iron and chromium. The aluminum-coated specimen showed the presence of adherent scale. The surface showed a nodular structure due to the formation of pits and zones of enhanced oxidation. The major part of the oxide was alumina with small fractions of chromium and iron oxides. The nodular region was enriched in the oxide of iron. The analysis of the surface by GIXRD revealed the nature of different phases formed on the surface. The oxide on the oxidized bare metal was Cr2O3, aluminized (non-oxidized) AlFe and Al2Fe, aluminized and oxidized Al2O3 and FeCr2O4, aluminized and laser-treated Al2O3, FeCr2O4, Fe2O3 and Fe3O4, nitrided Fe2O3 and FeCr2O4. In the light of the above results the mechanism of scale failure has been proposed.  相似文献   

13.
Pretreatment of steel 10 in a saturated aqueous solution of NH4F substantially affects its high-temperature (250–850°C) oxidation in air. During the oxidation, the pretreated steel becomes covered with a heat-resistant film mainly consisting of Fe2O3 or Fe2O3 + Fe3O4; however, the film can either promote or impede steel oxidation depending on the isothermal exposure time.  相似文献   

14.
Detailed microstructure investigations were performed on oxide scales formed on 310 stainless steel exposed isothermally at 600 °C to O2 with 40% water vapour for 1–336 h. FIB microscopy was used to study the evolution of the surface morphology and to prepare cross-section TEM thin foils of the oxide scales. The foils were investigated by analytical transmission electron microscopy. The results showed that a thin protective base oxide scale had formed after 1 h. Due to Cr loss from the oxide scale through water vapour induced Cr evaporation, local breakaway oxidation occurs, resulting in the formation of oxide nodules. The development of these nodules depends on whether a new Cr-rich healing layer is formed or not. A model for the evolution of the oxide scale is proposed based on the results regarding the composition and distribution of various phases in the oxide scale and subjacent steel.  相似文献   

15.
A sputtered coating of a low-Cr alloy without Si was deposited on the cast alloy with the same composition. The short term (100 h) oxidation behavior of the sputtered coating and the cast alloy was evaluated in air at 800 °C. The results indicated that the sputtered coating exhibited a higher oxidation resistance than the cast alloy. It was found that the mass gain of the cast alloy increased continuously with oxidation time and was higher than that of the sputtered coating, which demonstrated only a slight increase in mass gain with oxidation time after 5 h thermal exposure. During the initial thermal exposure of 0.5 h, the oxide scale formed on the cast alloy consisted of Fe2O3 and (Fe,Co,Cr)3O4 spinel with a small amount of Cr. However, (Fe,Co,Cr)3O4 spinel and Fe2O3 were thermally grown on the sputtered coating. After oxidation for 100 h, the oxide scale formed on the cast alloy consisted of Co3O4 and (Fe,Co)3O4 with internal oxide of Cr, while a double-layer oxide consisting of an outer (Fe,Co,Cr)3O4 spinel layer and an inner Cr2O3 layer was developed on the sputtered coating.  相似文献   

16.
The present study investigates the high temperature oxidation of alloy Sanicro 28 (35Fe27Cr31Ni) in 5% O2 and in 5% O2 + 40% H2O. Polished steel coupons were isothermally exposed in a tube furnace at 600, 700 and 800 °C for up to 168 h. The samples were investigated by gravimetry, grazing angle X-ray diffraction (XRD), Auger electron spectroscopy (AES), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and scanning transmission electron microscopy/energy dispersive X-rays (STEM/EDX). The results show that the material forms a protective scale in both environments. The scale is duplex. The inner part of the scale consists of corundum type chromium-rich (Cr x Fe1?x )2O3, and the outer layer consists of spinel type oxide. Chromia is lost from the protective oxide by vaporization of CrO2(OH)2 in O2 + H2O environment. The capacity of Sanicro 28 to suffer chromia vaporization without forming a rapidly growing iron-rich oxide is attributed to its high Cr/Fe ratio. The spinel formed at the oxide/gas interface could in addition be beneficial for oxidation behavior in wet oxygen because it may slow down chromia evaporation.  相似文献   

17.
Isothermal oxidation behavior of an HVAF-sprayed NiCoCrAlY coating on AISI 304L was studied in an Ar–10 %H2–20 %H2O environment at 600 °C. Techniques such as BIB/SEM, EDS, and XRD were used to comprehensively characterize the coating and the coating/substrate interface to investigate the oxidation mechanisms. Results were also compared with those obtained from an uncoated AISI 304L substrate. The alumina-forming NiCoCrAlY coating was found to exhibit superior oxidation behavior due to the formation of a slow-growing and protective Al2O3 scale, while the chromia-forming bare 304L substrate lost its protective capability due to the formation of a duplex [Fe3O4 on (Fe,Cr)3O4 spinel oxide] corrosion product layer.  相似文献   

18.
The oxidation behavior of the IN600 Ni?CCr?CFe superalloy was investigated in air at temperatures ranging from 750 to 950 °C, for up to 12 cycles. Oxidation kinetics and oxide scale morphologies were examined using weight gain measurements, SEM-EDS, and X-ray diffraction. The cyclic oxidation kinetic results suggested that the oxidation behavior of the IN600 alloy approximately followed a sub-parabolic rate and the scaling process was controlled by the formation of a chromia scale. At 850 °C, SEM-EDS observations indicated that the formed oxide scale was primarily composed of Cr2O3, and the internal oxidation of Cr and Ti occurred. At 950 °C, a fast initial stage with high weight gain was observed, followed by a steady-state stage with gradual weight gain. Additionally, a considerable change in the oxidation kinetic occurred. SEM-EDS observations and XRD results indicated that the external scale was relatively thick with a localized porous, preferential adherent, and a complex oxide scale was developed. This complex oxide scale consisted of an outermost thin layer composed of MnCr2O4?CCr2O3 mixed together with a small amount of isolated TiO2, an intermediate relatively thick layer, composed of Cr2O3, and an innermost discrete layer formed at the scale/alloy interface, which enriched by Ni/NiO mixed with Ti-, Al-, and Fe-oxides. Finally, only the Al alloying element was internally oxidized to form Al2O3 fingers, which create a discrete and narrow internal oxidation zone. Al oxide was observed as a dark area and primarily grows along the alloy grain boundaries in the vicinity of the inward chromia pegs.  相似文献   

19.
The oxidation behavior of Fe3Al and Fe3Al–Zr intermetallic compounds was tested in synthetic air in the temperature range 900–1200 °C. The addition of Zr showed a significant effect on the high-temperature oxidation behavior. The total weight gain after 100 h oxidation of Fe3Al at 1200 °C was around three times more than that for Fe3Al–Zr materials. Zr-containing intermetallics exhibited abnormal kinetics between 900 and 1100 °C, due to the presence and transformation of transient alumina into stable α-Al2O3. Zr-doped Fe3Al oxidation behavior under cyclic tests at 1100 °C was improved by delaying the breakaway oxidation to 80 cycles, in comparison to 5 cycles on the undoped Fe3Al alloys. The oxidation improvements could be related to the segregation of Zr at alumina grain boundaries and to the presence of Zr oxide second-phase particles at the metal–oxide interface and in the external part of the alumina scale. The change of oxidation mechanisms, observed using oxygen–isotope experiments followed by secondary-ion mass spectrometry, was ascribed to Zr segregation at alumina grain boundaries.  相似文献   

20.
Environments containing water vapour are common in many industrial processes, such as power generation systems. Hence, long-term oxidation (1000 h) of P-91 and AISI 430 was studied at 650 and 800 °C, in 100% H2O atmosphere. The oxidation resistance of the AISI 430 is better than that of the P-91, due to the formation of protective phases on the surface. At 650 °C, a scale composed of Fe3O4, Fe2O3 and (Fe,Cr)3O4 is formed on P-91, although at 800 °C the scale is mainly composed of Fe3O4 and (Fe,Cr)3O4. On the other hand, on AISI 430 the scale is composed mainly of (Fe,Cr)2O3 at 650 °C, and at 800 °C a layer of Cr2O3 is formed and remains owing to the higher diffusion rate of Cr at this temperature than at 650 °C, the latter of which compensates the Cr depletion by the degradation of the chromia scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号