首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
The naturally occurring nucleotide 3-(3-amino-3-carboxy-propyl) uridine ("acp3U") at position 20:1 of lupin tRNAMet was coupled to a photoreactive diazirine derivative. Similarly, the 4-thiouridine at position 8 of Escherichia coli tRNAPhe was modified with an aromatic azide. Each of the derivatized tRNAs was bound to E. coli ribosomes in the presence of suitable mRNA analogues, under conditions specific for the A, P, or E sites. After photoactivation of the diazirine or azide groups, the sites of crosslinking from the tRNAs to 16S or 23S rRNA were analyzed by our standard procedures, involving a combination of ribonuclease H digestion and primer extension analysis. The crosslinked ribosomal proteins were also identified. The results for the rRNA showed a well-defined series of crosslinks to both the 16S and 23S molecules, the most pronounced being (1) an entirely A-site-specific crosslink from tRNA position 20:1 to the loop-end region (nt 877-913) of helix 38 of the 23S RNA (a region that has not so far been associated at all with tRNA binding), and (2) a largely P-site-specific crosslink from tRNA position 8 to nt 2111-2112 of the 23S RNA (nt 2112 being a position that has previously been identified in footprinting studies as belonging to the ribosomal E site). The data are compared with results from a parallel study of crosslinks from position 47 (also in the central fold of the tRNA), as well as with previously published crosslinks from the anticodon loop (positions 32, 34, and 37) and the CCA-end region (position 76, and the aminoacyl residue).  相似文献   

2.
Site-specific photo crosslinking has been used to investigate the RNA neighborhood of 16S rRNA positions U788/ U789 in Escherichia coli 30S subunits. For these studies, site-specific psoralen (SSP) which contains a sulfhydryl group on a 17 A side chain was first added to nucleotides U788/U789 using a complementary guide DNA by annealing and phototransfer. Modified RNA was purified from the DNA and unmodified RNA. For some experiments, the SSP, which normally crosslinks at an 8 A distance, was derivitized with azidophenacylbromide (APAB) resulting in the photoreactive azido moiety at a maximum of 25 A from the 4' position on psoralen (SSP25APA). 16S rRNA containing SSP, SSP25APA or control 16S rRNA were reconstituted and 30S particles were isolated. The reconstituted subunits containing SSP or SSP25APA had normal protein composition, were active in tRNA binding and had the usual pattern of chemical reactivity except for increased kethoxal reactivity at G791 and modest changes in four other regions. Irradiation of the derivatized 30S subunits in activation buffer produced several intramolecular RNA crosslinks that were visualized and separated by gel electrophoresis and characterized by primer extension. Four major crosslink sites made by the SSP reagent were identified at positions U561/U562, U920/U921, C866 and U723; a fifth major crosslink at G693 was identified when the SSP25APA reagent was used. A number of additional crosslinks of lower frequency were seen, particularly with the APA reagent. These data indicate a central location close to the decoding region and central pseudoknot for nucleotides U788/U789 in the activated 30S subunit.  相似文献   

3.
Directed hydroxyl radical probing of 16S ribosomal RNA from Fe(II) tethered to specific sites within the RNA was used to determine RNA-RNA proximities in 70S ribosomes. We have transcribed 16S ribosomal RNA in vitro as two separate fragments, covalently attached an Fe(II) probe to a 5'-guanosine-alpha-phosphorothioate at the junction between the two fragments, and reconstituted 30S subunits with the two separate pieces of RNA and the small subunit proteins. Reconstituted 30S subunits capable of association with 50S subunits were selected by isolation of 70S ribosomes. Hydroxyl radicals, generated in situ from the tethered Fe(II), cleaved sites in the 16S rRNA backbone that were close in three-dimensional space to the Fe(II), and a primer extension was used to identify these sites of cleavage. Two sets of 16S ribosomal RNA fragments, 1-360/361-1542 and 1-448/449-1542, were reconstituted into active 30S subunits. Fe(II) tethered to position 361 results in cleavage of 16S rRNA around nucleotides 34, 160, 497, 512, 520, 537, 552, and 615, as well as around positions 1410, 1422, 1480, and 1490. Fe(II) tethered to position 449 induces cleavage around nucleotide 488 and around positions 42 and 617. Fe(II) tethered to the 5' end of 16S rRNA induces cleavage of the rRNA around nucleotides 5, 601, 615, and 642. These results provide constraints for the positioning of these regions of 16S rRNA, for which there has previously been only limited structural information, within the 30S subunit.  相似文献   

4.
The 16S ribosomal RNA neighborhood of ribosomal protein S20 has been mapped, in both 30S subunits and 70S ribosomes, using directed hydroxyl radical probing. Cysteine residues were introduced at amino acid positions 14, 23, 49, and 57 of S20, and used for tethering 1-(p-bromoacetamidobenzyl)-Fe(II)-EDTA. In vitro reconstitution using Fe(II)-derivatized S20, together with the remaining small subunit ribosomal proteins and 16S ribosomal RNA (rRNA), yielded functional 30S subunits. Both 30S subunits and 70S ribosomes containing Fe(II)-S20 were purified and hydroxyl radicals were generated from the tethered Fe(II). Hydroxyl radical cleavage of the 16S rRNA backbone was monitored by primer extension. Different cleavage patterns in 16S rRNA were observed from Fe(II) tethered to each of the four positions, and these patterns were not significantly different in 30S and 70S ribosomes. Cleavage sites were mapped to positions 160-200, 320, and 340-350 in the 5' domain, and to positions 1427-1430 and 1439-1458 in the distal end of the penultimate stem of 16S rRNA, placing these regions near each other in three dimensions. These results are consistent with previous footprinting data that localized S20 near these 16S rRNA elements, providing evidence that S20, like S17, is located near the bottom of the 30S subunit.  相似文献   

5.
6.
N and C-terminal halves of lactose permease, each with a single-Cys residue, were co-expressed, and crosslinking was studied. Iodine or N,N'-o-phenylenedimaleimide (o-PDM; rigid 6 A), crosslinks Asn245 Cys (helix VII) and Ile52 --> Cys or Ser53 --> Cys (helix II). N,N'-p-phenylenedimaleimide (p-PDM; rigid 10 A) crosslinks the 245/53 Cys pair weakly, but does not crosslink 245/52, and 1,6-bis-maleimidohexane (BMH; flexible 16 A) crosslinks both pairs less effectively than o-PDM. Thus, 245 is almost equidistant from 52 and 53 by up to about 6 A. BMH or p-PDM crosslinks Gln242 --> Cys and Ser53 --> Cys, but o-PDM is ineffective, indicating that distance varies by up to 10 A. Ligand binding increases crosslinking of 245/53 with p-PDM or BMH, has little effect with o-PDM and decreases iodine crosslinking. Similar effects are observed with 245/52. Ligand increases 242/53 crosslinking with p-PDM or BMH, but no crosslinking is observed with o-PDM. Therefore, ligand induces a translational or scissors-like displacement of the helices by 3-4 A. Crosslinking 245/53 inhibits transport indicating that conformational flexibility is important for function.  相似文献   

7.
The effect of genetic context on splicing of group I introns is not well understood at present. The influence of ribosomal RNA conformation on splicing of rDNA introns in vivo was investigated using a heterologous system in which the Tetrahymena group I intron is inserted into the homologous position of the Escherichia coli 23S rRNA. Mutations that block splicing in E. coli result in accumulation of unspliced 23S rRNA that is assembled into 50S complexes, but not 70S ribosomes. The data indicate that accommodation of the intron structure on the surface of the 50S subunit inhibits interactions with the small ribosomal subunit. Spliced intron RNA also remains noncovalently bound to 50S subunits on sucrose gradients. This interaction appears to be mediated by base pairing between the intron guide sequence and the 23S rRNA, because the fraction of bound intron RNA is reduced by point mutations in the IGS or deletion of the P1 helix. Association of the intron with 50S subunits correlates with slow cell growth. The results suggest that group I introns have the potential to inhibit protein synthesis in prokaryotes by direct interactions with ribosomes.  相似文献   

8.
L15, a 15 kDa protein of the large ribosomal subunit, interacts with over ten other proteins during 50 S assembly in vitro. We have probed the interaction L15 with 23 S rRNA in 50 S ribosomal subunits by chemical footprinting, and have used localized hydroxyl radical probing, generated from Fe(II) tethered to unique sites of L15, to characterize the three-dimensional 23 S rRNA environment of L15. Footprinting of L15 was done by reconstituting purified, recombinant L15 with core particles derived from Escherichia coli 50 S subunits by treatment with 2 M LiCl. The cores migrate as compact 50 S-like particles in sucrose gradients, contain 23 S and 5 S rRNA, and lack a subset of the 50 S proteins, including L15. Using both Fe(II).EDTA and dimethyl sulfate, we have identified a strong footprint for L15 in the region spanning nucleotides 572-654 in domain II of 23 S rRNA. This footprint cannot be detected when L15 is incubated with "naked" 23 S rRNA, indicating that formation of the L15 binding site requires a partially assembled particle.Protein-tethered hydroxyl radical probing was done using mutants of L15 containing single cysteine residues at amino acid positions 68, 71 and 115. The mutant proteins were derivatized with 1-[p-(bromo-acetamido)benzyl]-EDTA. Fe(II), bound to core particles, and hydroxyl radical cleavage was initiated. Distinct but overlapping sets of cleavages were obtained in the footprinted region of domain II, and in specific regions of domains I, IV and V of 23 S rRNA. These data locate L15 in proximity to several 23 S rRNA elements that are dispersed in the secondary structure, consistent with its central role in the latter stages of 50 S subunit assembly. Furthermore, these results indicate the proximity of these rRNA regions to one another, providing constraints on the tertiary folding of 23 S rRNA.  相似文献   

9.
In the ribosome, the aminoacyl-transfer RNA (tRNA) analog 4-thio-dT-p-C-p-puromycin crosslinks photochemically with G2553 of 23S ribosomal RNA (rRNA). This covalently linked substrate reacts with a peptidyl-tRNA analog to form a peptide bond in a peptidyl transferase-catalyzed reaction. This result places the conserved 2555 loop of 23S rRNA at the peptidyl transferase A site and suggests that peptide bond formation can occur uncoupled from movement of the A-site tRNA. Crosslink formation depends on occupancy of the P site by a tRNA carrying an intact CCA acceptor end, indicating that peptidyl-tRNA, directly or indirectly, helps to create the peptidyl transferase A site.  相似文献   

10.
Mapping the inside of the ribosome with an RNA helical ruler   总被引:1,自引:0,他引:1  
The structure of ribosomal RNA (rRNA) in the ribosome was probed with hydroxyl radicals generated locally from iron(II) tethered to the 5' ends of anticodon stem-loop analogs (ASLs) of transfer RNA. The ASLs, ranging in length from 4 to 33 base pairs, bound to the ribosome in a messenger RNA-dependent manner and directed cleavage to specific regions of the 16S, 23S, and 5S rRNA chains. The positions and intensities of cleavage depended on whether the ASLs were bound to the ribosomal A or P site, and on the lengths of their stems. These data predict the three-dimensional locations of the rRNA targets relative to the positions of A- and P- site transfer RNAs inside the ribosome.  相似文献   

11.
U3 snoRNA is required for early pre-rRNA processing events that include cleavage of the 5' external transcribed spacer (5'ETS) and 18S rRNA maturation. Herein, psoralen RNA crosslinking has been used to indicate novel in vivo interactions between the minimally-sized Trypanosoma brucei U3 snoRNA and pre-rRNAs. Two discrete U3 crosslinks were mapped to 5'ETS sequences, then individually isolated by hybrid selection following digestion of pre-rRNAs. Crosslink positions within these U3-site1 and U3-site2 complexes were resolved by RNaseH digestion and primer extension analyses. Hinge bases of U3 contacted site1 bases U140 and U142 just 3' of the processed primary site. This is the first experimental evidence of a U3 RNA interaction adjacent to a major 5'ETS cleavage site and supports a critical role for U3 in its processing. Highly conserved box A bases contacted site2 base U945, 187 nt upstream of 18S-like rRNA sequences. Site2 sequences are not required for primary processing, thus, a U3 interaction here might have roles in subsequent downstream processing events. These results clearly demonstrated that distinct U3 snoRNA sequences crosslinked different regions of the 5'ETS and support a model for U3 as a multifunctional snoRNA.  相似文献   

12.
Samples of 80 S ribosomes from rabbit reticulocytes were subjected to electron cryomicroscopy combined with angular reconstitution. A three-dimensional reconstruction at 21 A resolution was obtained, which was compared with the corresponding (previously published) reconstruction of Escherichia coli 70 S ribosomes carrying tRNAs at the A and P sites. In the region of the intersubunit cavity, the principal features observed in the 70 S ribosome (such as the L1 protuberance, the central protuberance and A site finger in the large subunit) could all be clearly identified in the 80 S particle. On the other hand, significant additional features were observed in the 80 S ribosomes on the solvent sides and lower regions of both subunits. In the case of the small (40 S) subunit, the most prominent additions are two extensions at the base of the particle. By comparing the secondary structure of the rabbit 18 S rRNA with our model for the three-dimensional arrangement of E. coli 16 S rRNA, these two extensions could be correlated with the rabbit expansion segments (each totalling ca 170 bases) in the regions of helix 21, and of helices 8, 9 and 44, respectively. A similar comparison of the secondary structures of mammalian 28 S rRNA and E. coli 23 S rRNA, combined with preliminary modelling studies on the 23 S rRNA within the 50 S subunit, enabled the additional features in the 60 S subunit to be sub-divided into five groups. The first (corresponding to a total of ca 335 extra bases in helices 45, 98 and 101) is located on the solvent side of the 60 S subunit, close to the L7/L12 area. The second (820 bases in helices 25 and 38) is centrally placed on the solvent side of the subunit, whereas the third group (totaling 225 bases in helices 18/19, 27/29, 52 and 54) lies towards the L1 side of the subunit. The fourth feature (80 bases in helices 78 and 79) lies within or close to the L1 protuberance itself, and the fifth (560 bases in helix 63) is located underneath the L1 protuberance on the interface side of the 60 S subunit.  相似文献   

13.
14.
Our previous studies have shown that 4-maleimidobenzophenone (BP-Mal) attached to troponin-C (TnC) mutants with single cysteines at positions 12, 57, 89 and 98 forms crosslinks to troponin-I (TnI), and the identified crosslinking regions indicate an antiparallel course of the two interacting polypeptide chains, in agreement with other studies using fragments of TnC and TnI. In this work we extended the mapping of the TnC-TnI interface by analysing photocrosslinking between TnI and BP-Mal labelled TnC mutants with single Cys residues at positions 21 (TnC21) and 158 (TnC158). We determined the sites of these photocrosslinks in TnI by progressive proteolysis of the crosslinked product, followed by N-terminal sequencing and mass spectrophotometric analyses. The results show that whereas TnC158 forms a specific crosslink with Met-21, TnC21 forms multiple crosslinks in the range of residues 96 to 134 of TnI. The results are discussed in light of the antiparallel model of the TnI-TnC complex and a structural model derived from low-angle X-ray and neutron scattering studies.  相似文献   

15.
The protection against micrococcal nuclease digestion afforded to chromatosomal DNA by the presence of a linker histone (H1(o)) has been quantitatively measured in two reconstituted systems. We have used chromatosomes reconstituted at two distinct positions on a DNA fragment containing the 5S rRNA gene from Lytechinus variegatus and at a specific position on a sequence containing Gal4- and USF-binding sites. In all cases, we find asymmetric protection, with approximately 20 bp protected on one side of the core particle and no protection on the other. We demonstrated through crosslinking experiments that the result is not due to any sliding of the histone core caused by either linker histone addition or micrococcal nuclease cleavage. Because the core particle is itself a symmetric object, the preferred asymmetric location of a linker histone must be dictated by unknown elements in the DNA sequence.  相似文献   

16.
Nucleotide residue U89 in the D loop of Escherichia coli 5S rRNA is adjacent to two domains of 23S rRNA in the large ribosomal subunit [Dokudovskaya et al., RNA 2 (1996) 146-152]. 50S ribosomal subunits were reconstituted containing U89(C, G or A) mutants of 5S rRNAs and the activities of the corresponding 70S ribosomes were studied. The U89C mutant behaves similarly to the wild-type 5S rRNA. Replacement of the pyrimidine base at position U89 by more bulky purine bases impairs the incorporation of 5S rRNA into 50S subunits, whereas the particles formed showed full activities in poly(U)-dependent poly(Phe) synthesis in the presence of either U89G or U89A 5S rRNA mutants. The activity of the reconstituted particles depends on the incorporation of 5S rRNA in agreement with early observations.  相似文献   

17.
A genetic basis for tetracycline resistance in cutaneous propionibacteria was suggested by comparing the nucleotide sequences of the 16S rRNA genes from 16 susceptible and 21 resistant clinical isolates and 6 laboratory-selected tetracycline-resistant mutants of a susceptible strain. Fifteen clinical isolates resistant to tetracycline were found to have cytosine instead of guanine at a position cognate with Escherichia coli 16S rRNA base 1058 in a region important for peptide chain termination and translational accuracy known as helix 34. Cytosine at base 1058 was not detected in the laboratory mutants or the tetracycline-susceptible strains. The apparent mutation was recreated by site-directed mutagenesis in the cloned E. coli ribosomal operon, rrnB, encoded by pKK3535.E. coli strains carrying the mutant plasmid were more resistant to tetracycline than those carrying the wild-type plasmid both in MIC determinations and when grown in tetracycline-containing liquid medium. These data are consistent with a role for the single 16S rRNA base mutation in clinical tetracycline resistance in cutaneous propionibacteria.  相似文献   

18.
19.
In Dictyostelium discoideum, newly assembled ribosomal subunits enter polyribosomes while they still contain immature rRNA. rRNA maturation requires the engagement of the subunits in protein synthesis and leads to stabilization of their structure. Maturation of pre-17 S rRNA occurs only after the newly formed 40 S ribosomal particle has entered an 80 S ribosome and participated at least in the formation of one peptide bond or in one translocation event; maturation of pre-26 S rRNA requires the presence on the 80 S particle of a peptidyl-tRNA containing at least 6 amino acids. Newly assembled particles that cannot fulfill these requirements for structural reasons are disassembled into free immature rRNA and ribosomal proteins.  相似文献   

20.
Recently, we found that a multicomponent ribonucleolytic degradosome complex formed around RNase E, a key mRNA-degrading and 9S RNA-processing enzyme, contains RNA in addition to its protein components. Herein we show that the RNA found in the degradosome consists primarily of rRNA fragments that have a range of distinctive sizes. We further show that rRNA degradation is carried out in the degradosome by RNase E cleavage of A+U-rich single-stranded regions of mature 16S and 23S rRNAs. The 5S rRNA, which is known to be generated by RNase E processing of the 9S precursor, was also identified in the degradosome, but tRNAs, which are not cleaved by RNase E in vitro, were absent. Our results, which provide evidence that decay of mature rRNAs occurs in growing Escherichia coli cells in the RNA degradosome, implicate RNase E in degradosome-mediated decay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号