共查询到18条相似文献,搜索用时 62 毫秒
1.
新型低碳贝氏体钢在含氯离子环境中的腐蚀行为和表观力学性能的变化 总被引:2,自引:0,他引:2
利用周浸加速腐蚀实验与力学性能实验对比研究了新型低碳贝氏体钢、超低碳铁素体钢以及09CuPCrNi钢这3种钢在含氯离子环境中的耐腐蚀性能与拉伸性能的变化.与超低碳铁素体钢和09CuPCrNi钢相比,新型低碳贝氏体钢不仅力学性能提高了,而且耐腐蚀性能亦得到改善,其腐蚀速率明显低于其余2种对比钢,并且随着腐蚀时间的延长其优势更加明显.3种钢的锈层具有相近的相组成,但新型低碳贝氏体钢的腐蚀产物颗粒最细小且锈层最致密,同时在接近钢基体的锈层处Cr和Cu的富集程度最明显且Cl的含量最低.新型低碳贝氏体钢锈层阻碍氯离子透过能力高于其余2种对比钢锈层. 相似文献
2.
3.
利用电化学、金相、能谱等方法, 研究了低碳贝氏体钢在表面锈层受到不同程度的损伤后, 在含Cl-环境中的继续腐蚀行为. 实验发现, 低碳贝氏体钢和作为对比材料的低碳钢试样的表面锈层受损伤后, 在继续腐蚀过程中均能很快得到修复. 在损伤程度与继续腐蚀时间相同的条件下, 低碳贝氏体钢的锈层电阻与损伤修复率均高于低碳钢. 低碳贝氏体钢基体/锈层界面的断裂韧性高于锈层本身.在受外界作用时, 锈层不会沿基体/锈层界面彻底脱落从而在基体表面保存残留锈层. 残留锈层能明显促进新锈层在损伤部位的形成. 原有锈层与损伤部位新形成的锈层中Cu和Cr含量接近, 并与钢基体的含量相当. 相似文献
4.
5.
6.
7.
选用某型船用低碳钢,在3mass%NaCl溶液中浸泡一年,用电化学技术研究外锈层去除前后低碳钢的腐蚀电化学特征.运用线性极化、电化学阻抗(EIS)和电化学噪声(EN)技术比较外锈层去除前后钢的耐蚀性,分析外锈层对腐蚀的影响;通过对内、外锈层和裸钢腐蚀形貌的显微观察、对内锈层的电子探针(EMPA)和X射线衍射(XRD)分析,研究外锈层对腐蚀影响的机理.结果表明,去除外锈层使钢的耐蚀性减小,腐蚀速率增大;外锈层的去除导致氧更易于向内输送,进而影响内锈层/金属基体界面的电极过程. 相似文献
8.
9.
10.
采用高Ti成分设计,通过高温轧制方法制备了3种含硼和不含硼7 mm厚的高强度贝氏体钢板,对钢中合金元素的作用以及加热、轧制工艺对钢板性能的影响进行了研究.结果表明,含硼钢板经600℃回火后,屈服强度达920 MPa,伸长率14.0%;回火后的含硼和不含硼钢板在-60℃~-20℃条件下5 mm厚试样的冲击韧度值均大于50 J,冲击断口具有韧窝形貌,并有大量平行于轧制方向的分层.含硼钢板具有细小板条贝氏体组织,原奥氏体晶粒宽度在10 μm左右,内部贝氏体板条宽度150~300 nm.这种细小的贝氏体组织以及冲击试验中出现的断口分层现象,使钢板在达到极高屈服强度的同时,仍具有极佳的低温韧性. 相似文献
11.
利用周浸加速腐蚀实验与力学性能实验对比研究了新型低碳贝氏体钢、超低碳铁素
体钢以及09CuPCrNi钢这3种钢在含氯离子环境中的耐腐蚀性能与拉伸性能的变化. 与超低
碳铁素体钢和09CuPCrNi钢相比, 新型低碳贝氏体钢不仅力学性能提高了, 而且耐腐蚀性
能亦得到改善, 其腐蚀速率明显低于其余2种对比钢, 并且随着腐蚀时间的延长其优势更加
明显. 3种钢的锈层具有相近的相组成, 但新型低碳贝氏体钢的腐蚀产物颗粒最细小且锈层
最致密, 同时在接近钢基体的锈层处Cr和Cu的富集程度最明显且Cl的含量最低. 新
型低碳贝氏体钢锈层阻碍氯离子透过能力高于其余2种对比钢锈层. 相似文献
12.
用不同轧制及热处理工艺制备了化学成分相同而晶粒尺寸不同的3种普碳钢试样。采周浸、锈层横截面微观分析、交流阻抗测试等手段对晶粒尺寸与普碳钢耐工业环境下大气腐蚀性能之间的规律进行了研究,同时测定了不同晶粒尺寸的普碳钢在10%硫酸溶液中的极化曲线。结果表明,普碳钢晶粒尺寸从50um减小到4um,周浸加速腐蚀试验后锈层中裂纹和空洞的数量也相应减少,耐蚀性能提高;但极化曲线试验表明,晶粒细化可加速普碳钢在10%H2SO4溶液中的腐蚀速度。分析了晶粒尺寸对晶界局部阳极腐蚀电流密度的影响,对其影响耐蚀性的机理进行了讨论。 相似文献
13.
14.
表面纳米化低碳钢电化学行为尺寸效应 总被引:14,自引:2,他引:14
利用超声喷丸技术制备了表面纳米化低碳钢.结构分析表明,最表层低碳钢的晶粒尺 度在20nm左右,随着向基体方向靠近,纳米层晶粒尺度逐渐增加.对纳米低碳钢在0.05 mol /L H2SO4+0.05 mol/L Na2SO4腐蚀介质中腐蚀速度测试结果表明,纳米化后低碳钢 的腐蚀增加; 纳米低碳钢的电化学腐蚀行为存在尺寸效应.在晶粒尺度小于35 nm时,纳米 低碳钢的电化学腐蚀速度随晶粒尺度的增加而降低,当晶粒尺度高于35 nm后,晶粒尺寸对 腐蚀速度影响不大.纳米化后低碳钢的阳极反应历程不变,阳极交换电流密度提高;而阴极 反应历程改变,析氢反应容易,并由电化学步骤控制转变为由扩散步骤控制.纳米化后低碳 钢阴阳极反应同时得到促进,腐蚀速度增加. 相似文献
15.
通过对比25钢在热带海洋环境下自然海水和无菌海水中的平均腐蚀深度,研究微生物对碳钢腐蚀行为的影响。结果表明,海水中微生物的存在显著影响碳钢的平均腐蚀深度。浸泡时间为365 d时,在自然海水中的腐蚀深度为无菌海水中的2.6倍,产生了明显的局部腐蚀。无菌海水和自然海水腐蚀都会造成材料抗拉强度的下降,对比发现腐蚀时间较长时自然海水中材料抗拉强度下降更大,说明微生物腐蚀对材料抗拉强度有一定影响。微生物腐蚀对材料抗拉强度的影响作用,主要在于微生物的存在使材料的平均腐蚀深度增大,引起材料横截面积的减小。微生物腐蚀并不会降低退火25钢的延伸率和夏比冲击功,实验过程中未发现微生物作用下材料的氢脆现象。 相似文献
16.
回火温度对Mn系低碳贝氏体钢的低温韧性的影响 总被引:3,自引:0,他引:3
研究了回火温度对Mn系低碳贝氏体钢(LCMB)组织及低温冲击韧性的影响.显微组织分析表明,LCMB钢的轧态组织以贝氏体板条为主,经460℃回火2 h后,部分贝氏体板条开始粗化,经600℃回火2 h后,出现准多边形铁素体组织,并观察到少量铁素体再结晶现象.对力学性能的测试结果表明,LCMB钢板经460℃回火2 h后达到最佳的强韧性配合,屈服强度保持在725 MPa,-40℃Charpy冲击功A_(KV)为146 J.冲击断口呈现明显的韧性断裂形貌,韧脆转变温度由轧态的-18℃降低至-48℃.EBSD和TEM分析表明,低温韧性的改善是由于在同火过程中贝氏体板条的同复引起的大角度晶界比例增加及有效晶粒尺寸降低造成的. 相似文献
17.