首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 156 毫秒
1.
合理地选取齿轮的变位系数,是降低困油容积和流量脉动的有效措施。为具体分析变位系数对内啮合齿轮泵困油容积和流量脉动系数的影响,根据啮合定理建立渐开线内啮合齿轮泵的数值模型,采用扫过面积法求解内啮合齿轮泵的困油容积和瞬时流量,并分析困油容积和流量脉动随变位系数变化所受到的影响。结果表明:在其他参数保持不变的情况下,总变位系数不变时,随着小齿轮变位系数的增大,困油容积先减小后增大,瞬时流量逐渐增大,流量脉动率减小。  相似文献   

2.
张东东 《机床与液压》2021,49(17):169-172
流量脉动是引起齿轮泵自身振动及产生流体噪声的根本原因。为了得到流量脉动特性,以某型直线共轭内啮合齿轮泵为研究对象,基于MATLAB软件分析不同重合度所对应的理论瞬时流量曲线,研究齿轮副几何参数对流量脉动率的变化规律。结果表明:齿轮副退出啮合,理论瞬时流量最小。脉动率递增时几何参数影响程度由大到小排列为:齿轮分度圆半径齿轮齿顶圆半径传动比(两齿齿差)齿圈齿顶圆半径;递减时由大到小排列为:齿轮齿数齿轮分度圆半径齿轮齿形半角。为了减少脉动率,对于满足计算的传动比,齿轮齿数确定,齿圈齿数取较小值,而齿圈齿数确定,齿轮齿数取较大值;齿形半角取较大值;齿轮及齿圈齿顶圆半径取较小值;齿轮分度圆半径在33.5~35 mm之间取值。  相似文献   

3.
运用轮齿啮合理论几何运动规律对谐波式齿轮泵的流量特性进行研究,推导出了瞬时流量的计算公式,并与内啮合齿轮泵的流量脉动进行对比。  相似文献   

4.
钱敏 《机床与液压》2017,45(8):108-110
由于外啮合齿轮泵的工作原理导致困油现象产生,直接影响齿轮泵的使用寿命和运行中的稳定性。简要概述了齿轮泵产生困油现象的主要原因,综述了解决齿轮泵困油现象的主要方法,并通过Pro/E对其困油容积进行了虚拟测量,得出泵内齿轮啮合运转时困油容积的体积变化。合理地解决齿轮泵困油容积的体积变化就能消除困油现象。基于此种解决途径,提出一种双齿轮非同步运转方法,以解决齿轮泵困油现象。  相似文献   

5.
阻尼孔在内啮合齿轮泵浮动侧板中的应用研究   总被引:1,自引:0,他引:1  
研究阻尼孔在内啮合齿轮泵浮动侧板中的作用及对其结构进行优化设计.分析内啮合齿轮泵困油产生的原因及困油发生的位置.将耳形槽出油孔设为阻尼孔,通过对浮动侧板背压腔中进油孔和出油孔圆心位置的分析以及不同阻尼孔直径时耳形槽内压强的仿真,优化侧板的结构,不但使侧板工作的稳定性增强,而且降低齿轮啮合的困油和空穴程度,提高了内啮合齿轮泵的性能.  相似文献   

6.
直线共轭内啮合齿轮泵因效率高、噪声低,在电静压系统中应用越来越广泛,尤其是在振动噪声要求苛刻的舰船领域。究其原因,先从理论上得出泵出口流量波动和压力脉动的计算方法,即得到泵源流量脉动 Qs和泵源阻抗 Zs这两个特性值的方法,并用MATLAB编译数据计算处理程序。搭建试验平台,采集数据,按照理论方法测试并分别计算了不同工况下泵出口的实际流量波动量和压力脉动量。汇总各工况数据并分析得出:测试平台合理,测试计算所得数据可信;同一频谱图里,电机泵基频幅值远大于泵齿基频幅值;不同工况下测试得出内啮合齿轮泵基频及其倍频对应的流量波动量和压力脉动量的变化趋势,具体量值均较小,适合用于静音系统中。  相似文献   

7.
随着齿轮泵向高压大流量低噪声方向发展,提出了一种低困油、少脉动的高阶椭圆齿轮泵,建立了相应的节曲线模型。通过3-3组合与3-3-3组合在流量和流量脉动率方面的对比,确定3-3-3组合作为高阶椭圆齿轮泵的主要结构。椭圆齿轮的传动比具有一定的变化规律,每个轮齿都有特定的啮合位置,利用坐标变换法分析了高阶椭圆齿轮的齿廓方程,为用CAD建模和仿真分析提供了理论依据。  相似文献   

8.
叶素娣  徐敬华 《机床与液压》2017,45(12):130-136
随着齿轮泵向高压大流量低噪声方向发展,提出了一种低困油、少脉动的高阶椭圆齿轮泵,建立了相应的节曲线模型.通过3-3组合与3-3-3组合在流量和流量脉动率方面的对比,确定3-3-3组合作为高阶椭圆齿轮泵的主要结构.椭圆齿轮的传动比具有一定的变化规律,每个轮齿都有特定的啮合位置,利用坐标变换法分析了高阶椭圆齿轮的齿廓方程,为用CAD建模和仿真分析提供了理论依据.  相似文献   

9.
通过研究外啮合齿轮泵输出流量以及从动轮所受液压力与平衡槽的关系,得出平衡槽的最佳尺寸。从而在保证齿轮泵容积效率的基础上,减小齿轮泵的困油现象和流量脉动。以某型号的高压齿轮泵为研究对象,通过建立理论公式求出齿轮泵所受的液压力;建立CFD模型,通过流体仿真得到液压力与出口流量;最后通过对比得出齿轮泵侧板的最佳角度、最佳深度和最佳宽度。  相似文献   

10.
卢淑群  邓景泉 《机床与液压》2014,42(19):120-122
针对齿轮泵存在振动与噪声的问题,提出了一种新型结构多齿轮变量齿轮泵。依据流量特性理论分析,采用MATLAB软件编写程序对瞬时流量特性进行仿真分析。结果表明:与普通外啮合齿轮泵相比,该变量泵不仅可以改变排量,使瞬时流量显著增加、流量脉动大幅降低,而且实现了对泵体振动与噪声的有效控制,具有良好的流量特性品质。  相似文献   

11.
陈康  许同乐  王营博 《机床与液压》2016,44(19):133-137
为了解决困油现象的历程和困油压力对齿轮泵工作状态的影响,根据困油条件下齿轮泵齿轮的振动模型,由内部流场数值分析,将困油压力作为耦合的条件,建立了困油条件下的齿轮副振动和内部流场耦合的动态模型,并通过对模型解耦,分析困油压力对齿轮副振动的影响以及困油压力的具体表现形式。通过齿轮泵内部流场进行仿真,和对通过传感器采集的振动信号处理分析,明确了困油压力的大小及位置和困油产生冲击的程度,表明所建耦合模型正确可靠,能够用于困油压力预测、振动冲击分析与困油历程的仿真分析。  相似文献   

12.
许茏  徐长俊 《机床与液压》2020,48(21):160-165
在直线共轭液压泵齿轮设计领域中,由于缺少高效啮合几何模型,利用现有理论难以获得齿轮的啮合规律并指导齿廓的设计。为解决此问题,基于Willis定理和反转法建立精确啮合几何模型。以经典的内啮合齿轮为例,推导啮合线具体公式,给出了啮合线、共轭线几何设计方法,并仿真验证该设计的正确性。基于SolidWorks软件对该几何模型进行动态装配仿真,研究其内在啮合规律。利用精确几何模型,能解决直线共轭齿轮设计时的啮合问题,为直线共轭齿轮的设计提供了参考  相似文献   

13.
仇晓燕 《机床与液压》2016,44(10):113-115
外啮合齿轮泵具有结构简单、质量轻、可靠性强等特点,被广泛用于液压设备中。但由于泵体结构和工作原理导致困油现象,严重影响着齿轮泵的工作效率和稳定性。对齿轮泵的困油现象以及现有的解决方法进行简要阐述,仿真分析了齿轮泵的压力分布情况,详细研究了齿轮泵运转过程中困油容积的变化情况,在此基础上提出一种新方法,以求更好地解决齿轮泵的困油问题。  相似文献   

14.
以某型号带预压缩腔结构的高压柱塞泵为对象,建立该柱塞泵内部流体模型,利用计算流体动力学软件PUMPLINX对该柱塞泵内部流体动力学进行仿真,分析负载压力、转速以及不同的预压缩腔结构参数对高压柱塞泵出口流量脉动率的影响。结果表明:当预压缩腔节流孔直径分别为2、3和4 mm时,泵出口流量脉动率分别为39.87%、16.43%和17.67%;当预压缩腔节流孔跨度分别为5°、9°和12°时,泵出口流量脉动率分别为17.56%、13.21%和14.15%;当预压缩腔体积从200 cm^3增大至300 cm^3时,泵出口流量脉动率从22.67%减小至14.41%,当预压缩腔体积继续从300 cm^3增大至400 cm^3时,泵出口流量脉动率基本保持不变。该仿真结果为泵内部预压缩腔结构的设计与优化奠定了理论基础。最后对该高压柱塞泵进行了流量测试实验,实验结果与仿真结果一致,证明了仿真数据的正确性。  相似文献   

15.
以直线共轭内啮合齿轮泵的齿轮副为研究对象,通过对外齿轮的设计,并利用齿轮啮合基本定律及共轭齿廓的设计方法推导出内、外齿轮啮合线数学模型及内齿轮的齿形线数学模型,同时针对外齿轮的设计结构确定了外齿轮齿顶圆极限半径、齿形半角的可行范围,为直线共轭内啮合齿轮泵的设计提供理论依据。  相似文献   

16.
渐开线外啮合齿轮泵以结构简单、造价低廉等优点而在矿山、工程等领域应用广泛,但目前关于精准计算其瞬时流量、排量的文献较少。为此,基于齿轮啮合机制、轮齿齿廓性质以及转角和啮合点的关系,建立齿轮泵瞬时输出流量的数学及仿真模型。针对齿轮泵重合度、齿轮变位、卸荷槽、侧隙等影响因素对模型进行论证,进而提出一种精准计算渐开线外啮合齿轮泵排量的方法,并采用Simulink仿真软件对不同类型外啮合齿轮泵的瞬时流量进行仿真模拟。同时利用3种不同型号齿轮泵验证排量公式,其最大误差在5%以内。验证计算模型有效性后,基于MATLAB设计了齿轮泵计算辅助平台,实现了外啮合齿轮泵瞬时流量、排量性能可视化,以简化计算流程,适应工程化应用。  相似文献   

17.
为了深入研究圆弧螺旋齿轮泵在高速高压工况下吸油腔漩涡空化及其对齿轮泵性能的影响,以过渡曲线为正弦的圆弧螺旋齿轮泵为研究对象,选择全空化模型,应用计算流体动力学软件(PumpLinx)对圆弧螺旋齿轮泵在高速高压工况下进行了数值模拟,针对漩涡空化出现的位置、形成过程、演变过程及对出口流量特性的影响进行了研究。结果表明:在高速高压工况下,齿轮泵吸油腔齿背部边缘位置出现漩涡流动,从而产生漩涡空化,漩涡核心位置的空化现象最为严重,向漩涡的边缘位置空化程度逐渐减弱;该位置的漩涡空化呈现周期性的形成-发展-消失的过程;空化导致泵出口流量脉动和压力脉动增大,周期性的漩涡空化造成泵出口流量周期性波动,对齿轮泵出口流量产生不利影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号