首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
采用单层钎焊CBN砂轮开展了切入式磨削CSS-42L钢的试验,测试了磨削过程中的磨削力和磨削温度,研究了磨削用量(切深和工件进给速度)对磨削力、工件表面温度和磨削比能的影响规律,并和白刚玉砂轮进行了对比。研究结果表明:磨削深度对磨削力和磨削温度的影响最为明显,而工件速度的影响不明显;相同情况下,采用单层钎焊CBN砂轮磨削CSS-42L时的磨削力、温度、比能都低于白刚玉砂轮,亦即在切入式磨削CSS-42L钢时,单层钎焊CBN砂轮的磨削加工性能优于白刚玉砂轮。  相似文献   

2.
本文通过一系列的试验,研究了陶瓷结合剂CBN砂轮外圆切入磨削45淬火钢的磨削力的变化规律,建立了相应磨削力的经验公式,并与普通砂轮磨削作对比,试验结果表明,陶瓷结合剂CBN砂轮的磨削力比普通砂轮的小,采用陶瓷结合剂CBN砂轮磨削可以达到更高的磨削效率。  相似文献   

3.
本文研究了陶瓷结合剂CBN砂轮磨削钛合金的磨削力特征、砂轮磨损特征以及磨削表层的残余应力分布等。研究结果表明,采用陶瓷结合剂CBN砂轮磨削钛合金,不仅磨削比高,磨削力、摩削温度低,而且磨削零件表面可获得残余压应力。  相似文献   

4.
通过分别采用国产陶瓷结合剂CBN砂轮与刚玉砂轮对45淬硬钢工件进行磨削试验,对磨削过程中的参数:磨削比和砂轮磨损进行对比。试验结果表明:砂轮线速度对磨削比有显著影响。①当采用普通速度(Vs=35m/s)对45淬硬钢工件进行磨削时,陶瓷结合剂CBN砂轮的磨削比是白刚玉砂轮的36倍;②当把砂轮线速度Vs提高到50m/s时,陶瓷结合剂CBN砂轮的磨削性能得到了显著提高,其磨削比为白刚玉砂轮的300倍左右。试验结果说明,陶瓷结合剂CBN砂轮在高速磨削条件下,砂轮磨损率低,而且具有较高的磨削能力和效率。  相似文献   

5.
陶瓷CBN砂轮在成形加工和精密加工等领域广泛应用,对其进行研究在提高工件加工质量和加工效率方面具有重要意义。分别从CBN磨粒、改性剂的添加、陶瓷CBN砂轮的制备和磨削性能方面,综述近些年陶瓷CBN砂轮的研究进展,并对其未来发展前景进行展望。在CBN磨粒方面,论述了CBN单晶的合成,介绍了CBN磨粒表面处理和加入强磁场时的处理方式;对于改性剂,分别论述了成孔剂、氧化物、金属物质、纳米材料的添加对陶瓷CBN砂轮性能的改善;在陶瓷CBN砂轮制备方面,介绍了其成形和烧结的方法。此外,还介绍了陶瓷CBN砂轮在钢类材料、镍基合金、钛合金等难加工材料上的磨削加工应用,并提出影响其磨削性能的因素。  相似文献   

6.
针对钛合金磨削温度高、磨削表面质量难以控制等特性,采用陶瓷结合剂CBN砂轮开展了TC4-DT钛合金高速磨削实验研究,研究了磨削用量对磨削温度、磨削力和磨削表面形态影响规律及机制。结果表明:砂轮线速度和磨削深度对钛合金TC4-DT磨削力、磨削温度及表面粗糙度影响最为显著,而工作台速度对其影响不明显。砂轮线速度在60~80 m/s时,磨削温度较低,磨削表面质量良好;而砂轮线速度达100 m/s后,磨削温度急剧上升,磨削表面出现斑状涂覆物、微裂纹等热损失缺陷。选择合理高速磨削工艺可获得良好磨削表面质量并提高加工效率。  相似文献   

7.
在A.Ghosh和A.K.Chattopadhyay的研究中,最近介绍的单层钎焊CBN砂轮由精密的钎焊技术制造而成。该技术使得钎焊CBN砂轮在多方面上都比电镀CBN砂轮有优越性。在磨粒承受低负荷和高负荷两种情况下对这种钎焊砂轮的结合力都进行了评估。有趣的是,任何情况下都没有发现磨粒脱落问题。但是,在高负荷情况下可以观察到磨粒在胎体层出现破裂,并且与胎体(钎焊合金)整体脱落。钎焊砂轮的这种早期破裂.严重影响了它的磨削性能。本文对钎焊CBN砂轮的缺点,包括磨粒可能的破裂形式进行深入分析。对钎焊砂轮与电镀砂轮中影响CBN磨粒的破裂形式进行了比较。此外,还列出了钎焊砂轮磨粒破坏形式的可能因素,也介绍了提高单层钎焊CBN砂轮性能切实可行的方法。  相似文献   

8.
为进一步考察磨削液在电镀CBN砂轮在缓进给磨削条件下的使用性能,还进行了在镍基合金上切槽试验。在采用三种不同的水基磨削液的情况下,对电镀CBN砂轮平面磨削镍基合金后砂轮工作表面变化的情况进行检测对比。进行对比的三种磨削液分别为乳化液、可溶性磨削液A和  相似文献   

9.
陶瓷结合剂CBN砂轮在凸轮轴加工中的应用   总被引:1,自引:0,他引:1  
本文介绍了陶瓷结合剂立方氮化硼(CBN)砂轮的优越的磨削性能,总结了应用经验.采用郑州磨料磨具磨削研究所研制的陶瓷结合剂CBN砂轮在我厂进口的Landis数控高速磨床上进行了磨削冷激铸铁凸轮轴应用性试验.试验结果表明,加工工件粗糙度、砂轮的耐用度和寿命均达到进口CBN砂轮的水平.  相似文献   

10.
为解决钛合金磨削过程中存在的加工效率低、工具寿命短、加工表面质量差等问题,采用冷压成型和高温钎焊技术研制集孔隙率高、耐磨性好和自锐性能优异等特点于一体,基于开放孔隙的钎焊CBN多孔超硬磨料砂轮。完成该砂轮的开放孔隙结构设计与制备,开展钛合金磨削加工性能和磨损试验研究,分析磨削用量参数对钛合金加工性能的影响规律,揭示其自锐性能以及其对工件表面质量的影响。结果表明:当CBN砂轮孔隙尺寸和孔隙率分别为0.6~0.8 mm和40%时,砂轮工作层节块能获得较优的力学性能和较大的容屑空间;与磨削速度30 m/s相比,当磨削速度为80 m/s时,多孔CBN砂轮拥有更为稳定的磨削力比,处于1.5~2.2;随着累计材料去除体积的增大,砂轮表面动态有效磨刃数趋于一致,加工表面粗糙度快速降低并逐渐稳定。   相似文献   

11.
为分析CBN砂轮高速磨削颗粒增强钛基复合材料(particulate reinforced titanium matrix composites,PTMCs)的磨削性能,采用3种CBN砂轮开展PTMCs的高速磨削试验,对比研究其磨削力、温度、表面粗糙度及表面形貌。结果表明:相对陶瓷砂轮,钎焊砂轮的法向磨削力减小16.2%~40.4%、切向力减小25.2%~44.4%,磨削温度降低了26.0%~74.3%;相对电镀砂轮,钎焊砂轮的法向磨削力减小7.1%~31.1%、切向力减小23.3%~31.1%,磨削温度降低了14.5%~58.9%;钎焊砂轮在加工中表现出了最低的磨削力和温度,获得了最低的表面粗糙度和最好的表面质量,表面粗糙度可以达到0.60~0.77 μm。因此,在高速磨削PTMCs时,钎焊砂轮更具优势。   相似文献   

12.
用相同粒度的CBN与刚玉砂带,分别磨削45号钢,分析并比较其磨削性能。结果表明:CBN砂带磨耗比为210.4,刚玉砂带磨耗比为18.9,CBN砂带耐磨性远远高于刚玉砂带;CBN砂带加工工件的表面质量要优于刚玉砂带,但两者磨削工件的表面粗糙度Ra相差不大,分别为0.127 μm、0.128 μm;CBN砂带磨料出刃高,初始磨削效率高;刚玉砂带树脂结合剂硬度低,磨削60 min后基本丧失了磨削能力,而CBN砂带金属镍结合剂与磨料硬度有很好的匹配性,180 min后仍能保持28.2 g/h磨削效率。   相似文献   

13.
为评价K444高温合金的磨削加工性能,采用棕刚玉砂轮和白刚玉砂轮进行磨削试验,对比分析其磨削力、磨削比能、磨削工件的表面形貌和表面粗糙度以及砂轮磨损.结果表明:相比于白刚玉砂轮,棕刚玉砂轮的磨削力更小,磨削后工件表面粗糙度低,其表面粗糙度Ra在0.206~0.455μm,更易获得光滑的磨削表面.对表面粗糙度的敏感度分析...  相似文献   

14.
磨削高温是限制磨削技术发展的主要瓶颈之一,因而研究磨削过程中产生高温的机理及磨削温度的变化规律十分重要。采用260 mm的单层钎焊有序排布CBN砂轮,对镍基高温合金GH4169进行不同速度下的磨削实验。实验过程中,保持砂轮线速度和工件进给速度的比值不变,从而保持单颗磨粒最大未变形切屑厚度不变,发现比磨削能得到有效控制,磨削温度的上升主要由材料去除率的提高所导致;随着砂轮线速度的增加,磨削弧区热量分配关系发生显著变化,传入工件的能量增加;磨粒排布方式对传入工件的热量有影响,同一磨削工艺参数下,磨粒斜排布的砂轮磨削温度要低于磨粒直排布的砂轮,最佳磨粒排布方案还有待进一步的研究。  相似文献   

15.
高速陶瓷CBN砂轮贴片的实验研究   总被引:1,自引:0,他引:1  
本文从影响高速CBN砂轮陶瓷贴片性能的因素入手,凭借扫描电镜、差热分析仪等先进精密仪器对磨料进行了常温性能、差热分析、焙烧处理(870℃)分析;同时对陶瓷结合剂配成原理、比例和性能进行了试验探讨;利用ANSYS软件对陶瓷砂轮贴片的尺寸大小进行了优化分析;最后,利用超高速点磨削试验台对焙烧好的砂轮贴片进行了磨削性能实验。实验表明:研发的低温高强陶瓷结合剂,该配方结合剂的耐火度890℃,抗折强度达到了60.13 MPa;烧制的陶瓷贴片在小进给、小切深、超高速磨削下,表面粗糙度Ra值为0.002 mm左右。  相似文献   

16.
采用正交试验方法量化分析了陶瓷CBN砂轮的修整参数对工件表面质量的影响。研究结果表明:进给速度对工件表面粗糙度和支承长度率均有明显的影响;修整量对表面粗糙度影响较小,但对支承长度率却有较为明显的影响,且修整时往复次数越少,砂轮越锋利;修整速差对表面质量影响较小。因此,可以通过加大进给速度、降低单次深度和增大往复次数的方法,来达到提高首件表面粗糙度、增加修整间隔、提高砂轮使用寿命的目的。   相似文献   

17.
单层钎焊金刚石砂轮在制作完成之初由于砂轮基体加工存在误差以及磨粒粒径大小不一等原因造成磨粒等高性不一致,这使其难以在硬脆材料的精密磨削中得到广泛的应用。采用自制的钎焊碟轮对80/100#单层钎焊金刚石砂轮进行了修整试验研究。在修整试验前后跟踪了砂轮磨粒等高性的变化,进行了SiC陶瓷的磨削试验,并观测了工件表面质量的变化情况。试验结果表明:采用此方法能够实现单层钎焊金刚石砂轮的高效精密修整。修整试验结束后砂轮磨粒等高性较好,磨削SiC陶瓷的表面质量得到明显改善,表面粗糙度Ra值达到了0.1μm以下。  相似文献   

18.
在不同磨削深度、砂轮转速和进给速度组合下,研究微粉金刚石钎焊砂轮磨削氧化铝陶瓷过程的磨削力及工件的表面粗糙度的变化规律,并筛选出低磨削力和低工件表面粗糙度的加工工艺参数。试验结果表明:在微粉金刚石钎焊砂轮的磨削过程中,氧化铝陶瓷主要通过脆性断裂的方式去除;随着磨削深度、进给速度的增加,砂轮在进给方向和切深方向的力以及工件表面粗糙度都上升;随着砂轮转速的增加,进给方向和切深方向的力以及工件表面粗糙度都下降。试验获得的低磨削力和低工件表面粗糙度精密加工工艺参数分别为:磨削深度为1.0 μm,进给速度为12 mm/min,砂轮转速为24 000 r/min和磨削深度为1.0 μm,进给速度为1 mm/min,砂轮转速为20 000 r/min。低磨削力磨削时,微粉金刚石钎焊砂轮受到的X方向和Z方向的磨削力分别为0.15 N和0.72 N;精密加工后的氧化铝陶瓷的表面粗糙度值可达0.438 μm。   相似文献   

19.
Z. Shi  S. Malkin 《CIRP Annals》2003,52(1):267-270
Grinding of hardened bearing steel with electroplated CBN wheels was Investigated with particular attention to how the wear of the abrasive grains affects the wheel topography and grinding performance during the wheel ire. Power, surface roughness, and wheel topography data were obtained throughout the wheel life for internal cylindrical grinding. Dulling of CBN gratis by attrition was found to cause an increase in the grinding power, but the degree of dulling was restricted mainly by grain fracture and also by grain pullout. Grain fracture and pullout had a much smaller effect on the progressive increase in active grain density, which caused the surface roughness to progressively decrease. Wheel failure tended to occur by stripping of the abrasive layer when the radial wear reached about 70% - 60% of the grain dimension  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号