首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A strip laminar cooling process is investigated in this paper. Entransy theory and generalized constructal optimization are introduced into the optimization. Total water flow amount(WFA) in the laminar cooling zone(LCZ) and complex function are taken as the constraint and optimization objective, respectively. The entransy dissipation(ED) and maximum temperature different(MTD) of the strip are simultaneously considered in the complex function. WFA distributions of the headers in the LCZ are optimized. The effects of the total WFA, strip thickness and cooling water temperature on the optimal results are analyzed.The optimal cooling scheme is the eleventh cooling mode for the considered total 257 cooling schemes, and the complex function,ED and MTD of the strip are decreased by 11.59%, 5.59% and 17.58% compared with the initial cooling scheme, respectively.The total WFA and strip thickness have the obvious influences on the optimal cooing scheme, but the cooling water temperature has no influence in the parameter analysis range of this paper. The “generalized optimal construct” derived by minimum complex function shows a compromise between the energy retention and quality of the strip.  相似文献   

2.
Based on constructal theory and entransy theory,a generalized constructal optimization of a solidification heat transfer process of slab continuous casting for a specified total water flow rate in the secondary cooling zone was carried out.A complex function was taken as the optimization objective to perform the casting.The complex function was composed of the functions of the entransy dissipation and surface temperature gradient of the slab.The optimal water distribution at the sections of the secondary cooling zone were obtained.The effects of the total water flow rate in the secondary cooling zone,casting speed,superheat and water distribution on the generalized constructal optimizations of the secondary cooling process were analyzed.The results show that on comparing the optimization results obtained based on the optimal water distributions of the 8 sections in the secondary cooling zone with those based on the initial ones,the complex function and the functions of the entransy dissipation and surface temperature gradient after optimization decreased by 43.25%,5.90%and 80.60%,respectively.The quality and energy storage of the slab had obviously improved in this case.The complex function,composed of the functions of the entransy dissipation and surface temperature gradient of the slab,was a compromise between the internal and surface temperature gradients of the slab.Essentially,it is also the compromise between energy storage and quality of the slab.The"generalized constructal optimization"based on the minimum complex function can provide an optimal alternative scheme from the point of view of improving energy storage and quality for the parameter design and dynamic operation of the solidification heat transfer process of slab continuous casting.  相似文献   

3.
为了解决高热流密度电子器件散热问题,基于BOBYQA(bound optimization by quadratic approximation)梯度自由优化算法,并调用CFD软件的数值模拟结果,对微小通道热沉进行了优化设计.目标函数为热沉的总体热阻,约束了泵功消耗.分别讨论了不限制热沉总体高度以及约束高度2种条件下的最优解,详细计算了各个几何设计参数的优化路径.结果表明,窄深的通道更加有利于换热.与此同时,还计算了不同泵功消耗下的最优解,结果表明,随着泵功的增加,最优的热阻减小,但减小幅度随着泵功的增加而减小.  相似文献   

4.
Thermal designs for microchannel heat sinks with laminar flow are conducted numerically by combining constructal theory and entransy theory. Three types of 3-D circular disc heat sink models, i.e. without collection microchannels, with center collection microchannels, and with edge collection microchannels, are established respectively. Compared with the entransy equivalent thermal resistances of circular disc heat sink without collection microchannels and circular disc heat sink with edge collection microchannels, that of circular disc heat sink with center collection microchannels is the minimum, so the overall heat transfer performance of circular disc heat sink with center collection microchannels has obvious advantages. Furthermore, the effects of microchannel branch number on maximum thermal resistance and entransy equivalent thermal resistance of circular disc heat sink with center collection microchannels are investigated under different mass flow rates and heat fluxes. With the mass flow rate increasing, both the maximum thermal resistances and the entransy equivalent thermal resistances of heat sinks with respective fixed microchannel branch number all gradually decrease. With the heat flux increasing, the maximum thermal resistances and the entransy equivalent thermal resistances of heat sinks with respective fixed microchannel branch number remain almost unchanged. With the same mass flow rate and heat flux, the larger the microchannel branch number, the smaller the maximum thermal resistance. While the optimal microchannel branch number corresponding to minimum entransy equivalent thermal resistance is 6.  相似文献   

5.
By taking equivalent thermal resistance, which reflects the average heat conduction effect and is defined based on entransy dissipation, as optimization objective, the “volume to point” constructal problem of how to discharge the heat generated in a fixed volume to a heat sink on the border through relatively high conductive link is re-analyzed and re-optimized in this paper. The constructal shape of the control volume with the best average heat conduction effect is deduced. For the elemental area and the first order construct assembly, when the thermal current density in the high conductive link is linear with the length, the optimized shapes of assemble based on the minimization of entransy dissipation are the same as those based on minimization of maximum temperature difference, and the mean temperature difference is 2/3 of the maximum temperature difference. For the second and higher order construct assemblies, the thermal current densities in the high conductive link are not linear with the length, and the optimized shapes of assemble based on the minimization of entransy dissipation are different from those based on minimization of maximum temperature difference. For the same parameters, the constructs based on minimization of entransy dissipation and the constructs based on minimization of maximum temperature difference are compared, and the results show that the constructs based on entransy dissipation can decrease the mean temperature difference better than the constructs based on minimization of maximum temperature difference. But with the increase of the number of the order, the mean temperature difference does not always decrease, and there exist some fluctuations. Because the idea of entransy describes the heat transfer ability more suitably, all of the heat conduction constructal problems may be re-optimized based on it. Supported by the Program for New Century Excellent Talents in University of China and the Foundation for the Author of National Excellent Doctoral Dissertation of China (Grant No. 200136)  相似文献   

6.
热电器件可以实现热能和电能的直接转换,在废热回收和固态制冷领域具有重要的研究价值,对热电发电器件的能量转换效率进行精确测量是评价热电材料和器件性能的重要基础。针对测量过程中存在测量参数多、误差来源广等问题,本文从测量原理出发,通过公式推导和合理赋值对影响能量转换效率测量的因素进行详细分析,指出提高器件输出功率和冷端流出热流值的测量精度对于获取准确的转换效率必不可少。其中,器件输出功率的测量结果主要受界面接触电阻的影响,冷端流出热流值的准确获取则需要选择合适的参比试样。此外,当热端温度较高时,还需要考虑热辐射的影响。最后,简要总结了近年来高能量转换效率热电发电器件的研究进展和面临的挑战。  相似文献   

7.
Based on construtal theory, a nonuniform heat generation problem in a rectangular body is investigated in this paper. Entransy dissipation rate (EDR) is taken as the optimization objective. The optimal body shapes with constant and variable widths of the high conductivity channel (HCC) are derived. For the rectangular first order assembly (RFOA) with constant cross-section HCC, the shape of the RFOA and width ratio of the HCCs are optimized, and the double minimum EDR is obtained. The heat transfer performance of the RFOA becomes worse when the nonuniform coefficient increases. For the RFOA with variable cross-section HCC, the EDR of the RFOA can be minimized for four times. Compared the optimal construct based on minimum EDR of the RFOA with that based on minimum maximum temperature difference, the shape of the former optimal construct is tubbier, and the average temperature difference is lower. In the practical design of electronic devices, when the thermal safety is ensured, the constructal design scheme of the former optimal construct can be adopted to improve the global heat transfer performance of an electronic device.  相似文献   

8.
Both parallel and staggered plate fin arrays have shown promise for use in high perfomance heatsinks regard of its individual manufacturing costs.The geomtrical and operational parameters are very important to theri cooling perfomance as heatsinks in practical applications.Fluent 5.0 commercial CFD(computational fluid dynamic)code is used to simulate the flow and heat transfer of those heatsinks of different realistic parameters.Based on those simulations,two correlations,concerning Nusselt number and friction factor as the functions of geometrical and operational parameters,FB(fin-base area ratio),PR( ratio of spanwise pitch to lengthwise pitch)and Re,were developed.From the both,the performance comparisons for optimizing geometrical and operational parameters of a fixed dimension heatsink are whown at constant umping power and constant thermal resistance.Several optimized parameters were obtained with the discussion to various goals in real application.It demonstrates that in some particular situations,the parallel plate fin heatsinkds can out perform the staggered ones.  相似文献   

9.
针对Taconis振荡对低温液体测量造成严重干扰并且极大增强低温储液的漏热问题,基于计算流体动力学(CFD)模拟方法,对氦气为介质的单端开口细长管内发生的Taconis振荡进行研究,低温端和常温端的温度分别为8和300 K.通过数值模拟,获得包括热流密度、声流分布等在内的热声参数和完整的Taconis热声起振过程,通过对管壁和气体介质之间的热量传递过程和时均热流密度以及管内声功分布进行分析,定量揭示Taconis振荡的发生机理.模拟结果表明,在线性热声理论中可以忽略的径向速度在Taconis振荡中不能被忽略,根据模拟结果将Taconis管边界层划分为发声区和耗散区2个区域,其中发声区为热声转换区域,耗散区以泵热损失和黏性耗散为主.  相似文献   

10.
基于火积耗散原理的热网加热器优化设计与分析   总被引:1,自引:1,他引:0  
为使热网加热器具有最优的换热性能,基于粒子群优化算法,以火积耗散数为目标函数,提出热网加热器优化设计的最小火积耗散优化方法.与传统的热网加热器设计计算不同,本文的优化设计不预先设定热网加热器的结构,通过优化确定热网加热器的最佳尺寸,同时,热网加热器优化设计考虑了工质的相变,以潜热修正值对壳侧蒸汽凝结的对流换热系数进行修正.对一热网加热器优化设计结果表明,通过优化设计,热网加热器的效能增加7.8%,同时热网加热器功率消耗下降19.6%,表明当热网加热器的热力性能最优时,其功耗达最小值.  相似文献   

11.
Thermoelectric effect is the most efficient way to convert electric energy directly from the temperature gradient. Thermoelectric effect-based power generation, cooling and heating devices are solid-stated, environmentally friendly, reliable, long-lived, easily maintainable, and easy to achieve miniaturization and integration. So they have unparalleled advantages in the aerospace, vehicle industry, waste heat recovery, electronic cooling, etc. This paper reviews the progress in thermodynamic analyses and optimizations for single- and multiple-element, single- and multiple-stage, and combined thermoelectric generators, thermoelectric refrigerators and thermoelectric heat pumps, especially in the aspects of non-equilibrium thermodynamics and finite time thermodynamics. It also discusses the developing trends of thermoelectric devices, such as the heat sources of thermoelectric generators, multi-stage thermoelectric devices, combined thermoelectric devices, and heat transfer enhancement of thermoelectric devices.  相似文献   

12.
提出微通道热沉几何结构的多参数反问题优化方法,其正向求解器是微通道热沉三维数值模型,反向求解器为简化的共轭梯度法,分析泵功的变化对热沉几何结构的影响.结果表明,在热沉换热面积和热表面热流密度恒定的条件下,随着泵功的增加,相应的最优热沉几何结构参数随之变化,即最优热沉的流道数和流道高宽比增加,流道比降低;泵功的增加使最优热沉的全局热阻降低,但在高泵功下全局热阻的降低幅度远低于在低泵功下的降低幅度.  相似文献   

13.
基于能源互联网理念的提出和可再生能源的快速发展,计及储能装置的运行特性,考虑冷电联供的经济性,兼顾系统的环保性和节能性,以综合成本为目标,搭建了含风电、光电等多种可再生能源和冷储能装置的冷电联供系统优化调度模型。基于对冷负荷需求和风电、光电出力的日前预测,采用自适应布谷鸟算法求解模型,得到不同运行方案下各机组的最佳调度方案。通过算例仿真发现,含有多种可再生能源和冷储能装置的冷电联供系统可以充分发挥可再生能源发电特有的经济、环保优势,减少了一次能源的消耗。仿真结果验证了模型的有效性。  相似文献   

14.
The flow and heat transfer of air-cooled heat exchangers play important roles in the performance of indirect dry cooling systems in power plants,so it is of benefit to the design and operation of a typical indirect dry cooling system to optimize the thermo-flow characteristics of air-cooled heat exchangers.The entransy dissipation method is applied to the performance optimization of air-cooled heat exchangers in this paper.Two irreversible heat transfer processes in air-cooled heat exchangers,the heat transfer between circulating water and cooling air and the mixing of circulating water,are taken into account and analyzed by means of the entransy dissipation method.The total entransy dissipation rate,which connects the geometrical parameters of air-cooled heat exchanger sectors and the heat capacity rates of the fluids to the heat flow rate in every sector,is obtained.Based on the mathematical relation and the conditional extremum method,an optimization equation group is derived,by which the air-cooled heat exchanger with known air-side parameters is optimized,showing that the entransy dissipation based optimization approach can contribute to the distribution optimization of circulating water in air-cooled heat exchangers of a typical indirect dry cooling system.  相似文献   

15.
采煤机用防爆型水冷电机的设计   总被引:1,自引:1,他引:0  
针对采煤机用防爆型水冷电机体积小、功率大、发热严重等特点,根据电机热量传递图调整了电磁负荷分布,使热源分布更趋合理.水路设计采用了折弯式水路,提高了散热能力.通过建立的热传导模型图对电机定子绕组温升进行了计算,并对电机轴和机座强度进行了校算.结果表明,该方案设计的电机在现场运行良好,方法合理有效.  相似文献   

16.
本文阐述了高压电缆冷热缩相结合终端的核心部件-硅橡胶导电/绝缘复合应力锥橡胶件模压成型模具的设计过程,完成了两次成型的分阶段的橡塑模具设计,包括模压工艺参数计算,选择合适压力的模压设备参数等。  相似文献   

17.
针对汽车尾气排放造成的热污染和能源浪费,提出一种利用回收尾气发电制冷的汽车主动式热电空调,并对其性能进行研究。利用热电技术(热电发电、热电制冷)对汽车高温尾气废热进行回收,用回收热能对汽车内环境进行供冷。通过建立该主动式热电空调的热力学模型,对不同废气温度、室外环境温度以及车内温度对系统性能的影响进行对比分析。结果表明:主动式热电空调性能受尾气温度、室外温度和车内温度影响较大,且其中尾气温度对制冷量和发电效率影响最大; 增加发电片数目能够有效提高制冷量和系统效率; 当发电片数目n=6时,该模型可达到最大制冷量以及最大系统效率,分别为109.92 W和0.46。  相似文献   

18.
为缓解国家电网压力,根据国家民用建筑供暖标准,设计了3种不同结构的固体蓄热装置。用数值模拟的方法研究了不同结构对蓄热装置放热特性的影响。结果表明,在蓄热体总体积一定的情况下,2块长方体蓄热体所在的正方体框内的空气温度最高,其次是2块球形蓄热体所在的正方体,而1块球形蓄热体所在的正方体框内的空气温度最低。  相似文献   

19.
热阻网络模型在微槽冷却热沉优化设计中的应用   总被引:1,自引:0,他引:1  
基于热阻网络模型,以热阻和压降作为目标函数建立了微槽冷却热沉的多目标优化模型,采用序列二次规划(SQP)方法对微槽的结构尺寸进行了优化设计。对于冷却尺寸为L×W=6 mm×6 mm,功率为100 W的芯片的热沉,优化后微槽宽度和高度分别为120μm和815μm,相应地总热阻为0.413 K/W。对优化后的微槽冷却热沉采用计算流体动力学(CFD)方法进行了数值模拟。模拟结果与热阻网络模型预测的结果吻合得很好。  相似文献   

20.
In order to reduce the power consumption and meet the cooling demand of every heat source component,three kinds of multi-heat source cooling system schemes were designed base on the characteristic of power split hybrid electric vehicle( HEV). Using the numerical simulation method,the power system heat transfer model was built. By comparing the performance of three different schemes through the Simulink simulation,the best cooling system scheme was found. Base on characteristics of these cooling system structures,the reasonableness of the simulation results were analyzed and verified. The results showed that the cooling system designation based on the numerical simulation could describe the cooling system performance accurately. This method could simplify the design process,improve design efficiency and provide a new way for designing a multi-heat source vehicle cooling system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号