首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 156 毫秒
1.
电力电缆运行中导体的温度是确定电缆是否达到载流量的依据,为分析热路简化模型计算电缆导体温度的精度,根据110 kV交联聚乙烯电缆各层温度的热路模型及其简化模型,借助Matlab软件推导出了基于电缆表面温度推算电缆导体温度的计算式,理论上演算了电缆热路完整模型与简化模型之间的误差,并给出该误差与所施加电流的函数关系。同时,设计了直埋电缆的暂态温升试验,根据实测表面温度数据利用简化模型计算了导体温度、绝缘层温度,对比分析了简化模型所计算的导体温度、绝缘层温度与实测导体温度、绝缘层温度之间的误差。结果表明,简化模型计算电缆导体温度与实测导体温度之间的误差在允许范围之内,可用于工程上基于电缆表面温度推算电缆导体温度。  相似文献   

2.
根据热路与电路的相似性,建立了电缆导体温度计算热路模型,开发了基于VB程序的电缆导体温度计算软件,该软件可实时准确计算出电缆导体温度,了解电缆运行状态,为电力电缆运行维护提供理论依据。  相似文献   

3.
针对目前难以直接测量运行电缆导体温度的问题,将10 kV三芯电缆热路简化为只含一个等效热容和一个等效热阻的暂态热路,利用一阶热路的响应实现电缆实时导体温度的解析计算;同时,在试验场进行了阶跃电流试验和周期负荷载流量试验,测量电缆导体温度和外皮温度.根据测量的电缆外皮温度和加载的负荷电流计算出试验电缆的实时导体温度,对比发现导体温度的实时计算值与测量值吻合度较高,验证了该计算方法的正确性.该解析计算方法易于实现、计算准确,不仅可用于计算常用敷设方式下不同回路三芯电缆实时导体温度,还可根据电缆当前运行状态适当调整负荷电流,在保证安全的前提下提高现有电缆线路的输电能力.  相似文献   

4.
单芯电缆线芯温度的非线性有限元法实时计算   总被引:2,自引:1,他引:2  
考虑电缆材料热性参数是温度的函数及忽略热量沿着线芯轴向传输所造成的线芯温度计算误差,为提高电缆线芯温度计算的精度,提出基于非线性有限单元法计算电缆导体的温度。研究电缆导体径向、轴向温度梯度以及热量扩散规律,分析运行电流、外界环境温度等因素对电缆线芯轴向、径向温度分布的影响。根据传热学原理,研究电缆热性参数随温度变化对电缆导体温度的影响,建立电缆导体温度计算三维非线性有限元模型,并通过实验数据对非线性有限元模型进行验证和修正。实验和有限元仿真的对比表明:忽略电缆热量沿着轴向传输以及热性参数的改变会造成线芯温度计算误差;所提出的电缆导体温度实时计算非线性有限元模型的有效性,为高温下运行电缆导体温度监测与负荷预测奠定了基础。  相似文献   

5.
导体温度作为运行电缆的关键状态参数,是影响电缆载流能力、绝缘性能的重要因素。针对传统方法难以克服电缆本身物性参数和外部环境变化影响的局限,构建了以电缆运行电流和电缆实时外表面温度为输入,以导体温度为输出的Elman神经网络模型,并引入粒子群算法优化网络的初始权值和阈值。最后,提出了具体的电缆导体温度动态计算方法,通过设计不同工况下电缆温升实验,进而验证了所提出方法的有效性。实验结果表明,所提方法的计算准确度可以不受电缆物性参数、负荷变化方式及外部环境变化的影响,有助于实现电缆导体温度的实时监测。  相似文献   

6.
依据海南联网系统500 kV海底电缆捆绑特殊海底光缆的实际情况,通过分布式光纤传感技术结合经有限元仿真模型优化的IEC60287热路模型的方法可以监测海底电缆内部的温度分布。在实验室中搭建岸上模拟实验平台,利用中压电缆捆绑光纤的结构进行捆绑电缆岸上模拟实验。同时,将经验证的温度监测方法应用于海南联网系统500 kV海底电缆,以C相空气段为例监测捆绑电缆光单元的温度。采用有限元仿真计算电缆表面的温度,根据电缆表面的温度基于热路模型推导出对应的导体温度,得到电缆导体在实际运行过程中的温度变化。岸上模拟实验测量的导体温度与数值计算得到导体温度的误差低于1.77%, 验证了海底电缆导体温度监测方法的准确性。  相似文献   

7.
电缆分布式光纤测温系统测量结果符合性的比对试验   总被引:2,自引:0,他引:2  
为验证应用在电缆线路上的分布式光纤测温系统(DTS)对电缆导体温度和动态载流量计算的符合性,实时测量了不同的敷设环境下电缆在施加相应的负荷电流时的导体温度,以此验证了DTS的导体温度和动态载流量计算符合性,并完成了隧道、直埋等典型敷设环境条件下的周期负荷、随机负荷电流等条件下验证试验研究。结果表明,比对试验方法可有效判断应用在电缆线路上的DTS的性能;有效验证DTS对电缆导体温度和动态载流量计算的符合性;提高DTS计算的精确性;提高DTS在电缆线路安全运行中应用的作用。  相似文献   

8.
外皮温度监测的单芯电缆暂态温度计算与试验   总被引:4,自引:3,他引:1  
导体温度是反映电缆运行状态的关键因素,因而有必要实现对它的监控。实际中对运行电缆导体温度的直接测量难以实现,工程中常采用计算的方式来获取,而复杂多变的电缆外部因素使得对导体温度的精确计算也非常困难。为此,在电缆外皮温度监测的基础上,建立了单芯电缆暂态热路的数学模型;分别推导出只考虑电流变化和只考虑表皮温度变化两种情况下的暂态温升递推公式,进而推导出单芯电缆暂态温度的完整叠加公式;并采用经典4阶Runge-Kutta法求解微分方程组计算电缆本体温度。同时编制了电缆暂态计算软件,可根据电缆外皮温度的监测,计算电缆导体和金属护套暂态温度。为验证暂态模型和软件编制的正确性,在试验现场进行了单芯电缆暂态温升试验,并将计算结果与试验测得的温度数据进行了对比验证。结果表明,基于电缆外皮温度监测的单芯电缆暂态温度计算具有较高的精度,可用于单芯电缆实际运行中的温度控制、电缆状态监测及其故障预警等方面。  相似文献   

9.
为间接测量得到电缆导芯温度、预防电缆接头故障,建立了电缆接头2阶和1阶暂态热路简化模型,提出了一种电缆接头导芯温度的反演算法,推导得出导体实时温度。同时,通过参数辨识对电缆接头进行在线监测并得到故障诊断结果。结果表明,建立的电缆接头2阶和1阶暂态热路模型可有效简化反演计算,进而通过电缆接头外皮和金属护套温度反推出导体温度,且所得反演结果与实测结果相符。此外,根据辨识参数相对正常运行状态时的变化情况,可判断出电缆接头是否存在故障隐患以及是何种故障。  相似文献   

10.
运行电缆导体温度监测一直是电缆安全运行所关注的问题。运行电缆某时刻导体温度不能直接测量,往往是在已知电缆导体初始温度的前提下,通过计算间接获取。因此提出了用一定时段稳态温度直接作为导体实时温度计算初始值,并利用暂态和稳态热路模型对暂态和稳态导体温度进行了计算。通过试验证实了可行性,并在某工程中进行了验证,为运行电缆的安全运行和预警创造条件。  相似文献   

11.
为实时掌握交联聚乙烯(XLPE)配电电缆的运行状态及其载流量,对电缆线芯温度的计算方法进行了研究。针对配电电缆敷设距离较短的特点建立了单芯电缆集中参数稳态等效热路模型,并推导出线芯温度计算公式,通过实验验证了计算方法的有效性,同时对考虑暂态过程的电缆线芯温度计算方法进行了讨论,为电缆运行状态的在线监测提供了参考。  相似文献   

12.
为了保证地下电缆的可靠运行,电力部门的常规做法是在电缆表面安装分布式光纤温度传感器(DTS),对电缆的热状态进行直接监测。由于电缆的载流量取决于导体的持续运行最高温度,因此基于传热学原理,利用通用有限元软件对计算场域进行自动划分,通过提取得到的单元与节点信息自主编制有限元计算程序,结合实时变化的负荷数据及DTs测量的电缆表面温度,分析计算了单芯电缆的瞬态温度场。通过110kV1×630mm^2交联聚乙烯电缆的试验研究,对比电缆导体温度的测量值和计算值,结果表明,自主编制的有限元计算程序能够准确地计算电缆的瞬态温度场,为电缆安全高效的运行提供了有效的理论依据。  相似文献   

13.
载流量是影响电力电缆使用寿命的重要因素,对于电力电缆的设计及其运行维护都有十分重要的参考价值。鉴于目前载流量计算手工化以及过程繁琐的现状,我们利用VC++语言,采用面向对象的程序设计方法,开发了一套电力电缆载流量计算软件。其特别之处在于,它不仅具有强大的载流量计算功能,而且增加了根据电缆外护套温度测算电缆线芯温度的功能,使该软件不仅使用于电缆设计生产部门,同时可以为电缆运行和维护单位提供电缆载流量的裕度评估,为电缆的增容和扩容提供理论依据。文章简要介绍了软件实现的理论基础、设计思路和基本功能,并对软件计算的准确程度进行了试验验证。  相似文献   

14.
郭然  牛海清  吴炬卓 《中国电力》2017,50(7):169-174
电缆排管敷设设计之初就考虑到了通过增加电缆回路满足后期增容要求。电缆原始及新增位置不同时,断面温度场和载流量也不同,故有必要对电缆原始及新增位置进行优化。以3×4排管敷设配电电缆为例,建立温度场有限元模型,对比温升试验与有限元计算结果,验证了有限元模型的有效性;基于该模型,在各回路加载相同电流前提下,以发热最严重电缆线芯温度最低为依据,对原始6回路及新增1回路进行位置优化。仿真研究表明,电缆分布越分散温度场分布越均匀,发热最严重电缆线芯温度越低;最优新增电缆位置与原电缆位置有关,因而建议在电缆位置优化时应考虑后期电缆回路的增加。  相似文献   

15.
在现役XLPE交流电缆线路的直流改造中,载流量的合理设计是关键问题之一,决定了改造线路的传输容量和运行可靠性。文中对同一线路在交、直流电压下运行时的等效热路模型及载流量解析算法进行了对比,分析了造成交、直流线路载流量差异的关键因素,并以空气敷设的三芯10 kV XLPE电缆为例,进行了同一线路在相同敷设条件下的交、直流载流量模拟试验。研究发现,目前直流改造所涉及的现役XLPE交流电缆线路,在进行直流载流量评估时,绝缘温差要求不成为限制条件,仅需考虑线芯温度限制、按照IEC60287-2017推荐方法进行计算;在线芯电阻、金属护套损耗、载流芯数、环境热阻及线芯允许长期工作温度等影响因素中,交流电缆改为直流运行后线芯允许工作温度由90℃下降为70℃,在很大程度上抵消了其他因素对载流量的有利贡献;10 kV XLPE电缆载流量模拟试验数据和解析计算结果吻合,偏差很小,验证了解析计算方法的有效性。对10、35 kV三芯和110 kV单芯电缆在不同典型敷设情况下的交、直流载流量计算显示,改为直流运行后,三芯电缆的载流量略有增加,单芯电缆稍有下降,变化幅度均未超过6.5%。  相似文献   

16.
地下电力电缆周围气象温度具有不确定性。通过考虑气象温度对地下电力电缆可靠运行的实时影响,借助广义极值分布(Generalized extreme value distribution,GEV)对气象温度进行概率分布拟合,在此基础上分析了地下电力电缆的温度场和热阻等效电路,提出了基于温度概率预测的地下电力电缆可靠性模型,从而有效预测地下电力电缆的导体温度。数值仿真计算与实际测量结果的比较验证了该预测模型的有效性和准确性,为地下电力电缆可靠运行和温度在线监测提供了重要的技术支撑。  相似文献   

17.
有限元法计算交联电缆涡流损耗   总被引:5,自引:5,他引:5  
电力电缆的导体交流损耗和金属屏蔽层涡流损耗是影响电缆群温度场分布和电缆载流量确定的重要因素。为确定电缆运行中的损耗,在考虑趋肤效应和邻近效应的基础上,利用有限元法对电缆群不同排列方式和接地方式下的导体交流损耗和金属屏蔽层涡流损耗进行了计算。计算结果表明,导体交流损耗随回路数增多、电缆间距减小而增大,金属屏蔽层损耗随回路数增多而增大,与电缆间距的关系与接地方式有关,单端接地时,金属屏蔽层损耗随间距增大而减小,双端接地时,金属屏蔽层损耗随间距增大而增大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号