首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为研究压实程度对非饱和重塑弱膨胀土孔隙结构的影响,探讨膨胀土孔隙结构改变对土–水特征曲线的影响。以新疆哈密地区重塑膨胀土为研究对象,采用压汞试验测定压实程度对土样的微观孔隙结构影响,并利用热力学关系模型对膨胀土分形维数进行研究;采用滤纸法试验测量不同初始干密度下重塑土样的土–水特征曲线,提出可考虑压实作用影响的膨胀土土–水特征曲线双参数拟合模型,最后,基于土体孔隙特征,借助毛细管原理计算并结合滤纸法试验数据修正其土–水特征曲线。研究结果表明:随压实程度的增加,新疆哈密地区非饱和弱膨胀土孔隙呈初始三峰状并逐渐趋于双峰状分布,其在微观上表现为大孔隙的压缩引起的大孔隙向小孔隙的转化,孔隙内壁的粗糙程度及孔隙结构的复杂程度提高;土体基质吸力随含水率的增加而降低,相同体积含水率下,土体初始干密度越大,基质吸力越大,双参数模型可较好反映土体初始干密度对膨胀土土–水特征曲线发展规律的影响;基于毛细管原理的土–水特征曲线计算值同滤纸法实测曲线有相同函数模型发展规律,且随试样初始干密度的增加两者呈逐渐“远离”趋势发展;土–水特征曲线修正模型可统一描述非饱和弱膨胀土基质吸力随孔隙结构、含水率及密度状态的发...  相似文献   

2.
 吸力与非饱和土的力学性状密切相关,为探讨非饱和膨胀土吸力变化规律,以滤纸法为研究手段,测定6种不同压实度与13种不同重力含水率组合条件下荆门弱膨胀土的总吸力与基质吸力。试验基本覆盖该膨胀土持水状态与密实状态的可能变动范围。研究表明:土体持水状态与密实状态均对压实膨胀土吸力影响显著。相同密实状态下,吸力随持水程度的增大而降低,且变动幅度较大。相同持水状态下,吸力随密实程度的增大而增大。密实度小的试样吸力变化幅度大,密实度大的试样吸力变化相对平缓。在明确吸力变化规律的基础上,构建吸力–饱和度–孔隙比关系的本构方程,数值再现结果与模型预测结果均表明该方程能够有效描述压实膨胀土在可能密实状态与持水状态范围内的吸力变化规律。  相似文献   

3.
高庙子钙基膨润土具有明显的湿胀干缩特性,吸力变化会引起持水状态和孔隙比的变化。用蒸汽平衡法测得高吸力段(3~287 MPa)高庙子钙基膨润土的土水特性和变形特性。分析比较了吸力路径、试样初始孔隙比、应力加载历史以及土体结构对土水特性、变形及吸力应力的影响。研究表明,脱湿和吸湿过程中孔隙比的差异会引起体积含水率和饱和度的滞回。饱和度与吸力间关系受试样初始孔隙比和孔隙结构影响较大,与应力加载历史无直接关系。由吸力引起的吸力应力随吸力的增大而非线性增大,并在较高吸力时趋向于一定值。吸力应力受吸力路径、初始孔隙比以及孔隙结构的影响。  相似文献   

4.
干密度和饱和度是影响非饱和膨胀土强度和变形特性的重要因素。为研究干密度和饱和度对非饱和膨胀土抗剪强度的影响,以南阳膨胀土为试验材料,对不同饱和度和干密度的南阳膨胀土的压实样进行直剪试验,得到了不同干密度及饱和度下的抗剪强度;利用滤纸法试验测得了南阳膨胀土在不同初始干密度下的土水特征曲线,并利用Fredlund-Xing方程进行全吸力范围内的拟合。通过土-水特征曲线将饱和度换算成吸力,得到了不同密度和吸力下南阳膨胀土的抗剪强度。结果表明:低吸力范围内非饱和膨胀土的强度随吸力的增大而增大;而高吸力时随着吸力的增大,土的强度变化趋势与干密度和应力大小有关,竖向压力较大和干密度较小时,强度随吸力增大而增大。  相似文献   

5.
随着承载比有关试验方法和规范的引进,目前用通过承载比试验得到的CBR值作为土体特别是道路施工中路基填土的强度参考标准值逐渐成为普遍的方法。具有特殊工程性质的粉土,其压实后的强度和稳定性直接关系到上层建筑的工程质量和正常使用。对具有轻微膨胀性质的粉土在不同的击实能和初始含水量下压实,进行不浸水和浸水承载比试验,分析不浸水和浸水CBR值随初始含水量和击实能的关系,以及各因素对不浸水和浸水CBR差值的影响。试验结果表明,浸水膨胀软化对压实粉土浸水后的CBR强度有较大影响。不浸水CBR值随初始含水量增大而减小,大多试样的浸水CBR值随初始含水量变化出现峰值。膨胀量、不浸水和浸水CBR差值随初始含水量增加线性减小,不浸水和浸水CBR差值随膨胀量增加线性增大。低含水量下的压实粉土试样不浸水和浸水CBR差值随击实能增加而增大。  相似文献   

6.
 基于孔隙比和含水量随净应力和基质吸力变化的特征,建立孔隙比和含水量与净应力和基质吸力之间的关系式,并结合非饱和土的本构关系,得到弹性模量E和H及体积模量 和 与净应力、基质吸力和含水量之间的关系。然后采用试验数据拟合孔隙比–净应力–基质吸力三维曲面及体积含水量–净应力–基质吸力三维曲面,得到弹性模量E和H及体积模量 和 与净应力和含水量关系式中的参数,并分析了净应力和含水量对这4个模量的影响的规律性。分析结果表明:在一定净应力下,模量E随着质量含水量增大而减小;净应力越大,模量E随质量含水量减小越显著;在同一质量含水量下,净应力越大,模量E越大。随着质量含水量增大,模量H单调减小;随着净应力增大,模量H单调增大。在低质量含水量时,增加净应力,体积含水量增大,当质量含水量增加到一定程度以后,增加净应力会引起体积含水量的减小。在一定净应力下,增加吸力会使体积含水量减小;在同一质量含水量下,增加净应力能够减弱吸力对体积含水量的影响。  相似文献   

7.
使用不同初始状态的压实膨胀土,笔者在单轴固结仪上开展了不同加载路径下的吸湿变形试验。初始状态由含水率和孔隙比控制;加载路径分为两种:1无荷状态下浸水吸湿→加载压缩→卸载回弹;2加载压缩→浸水吸湿→卸载回弹。结合膨胀土双孔隙结构模型分析,得到以下结论:(1)压实膨胀土的自由膨胀变形会明显地随着初始含水率、孔隙比的降低而增大;(2)应力状态对压实膨胀土浸水吸湿变形特征有很大影响:无荷状态下浸水吸湿表现出明显的膨胀,而当上覆荷载较大时(本文为200 k Pa),则表现出明显的湿陷(压缩)变形;(3)两种加载路径下,初始含水率对膨胀土的吸湿变形都有显著的影响,初始含水率越小,浸水后变形(膨胀或压缩)量都越大;初始孔隙比对无荷状态下吸湿后膨胀土的压缩指数和回弹指数影响很小;(4)膨胀土双孔结构中,"团粒结构"的吸力(含水率)状态会对"宏观孔隙"的变形产生较大影响,吸湿过程中吸力增量越大,宏观孔隙的变形越大。  相似文献   

8.
针对作为我国缓冲/回填材料的高压实高庙子膨润土,采用自主研制的膨胀力-渗透性一体化测试仪器开展膨胀力试验,分别测定圆饼状试样的轴向膨胀力和径向膨胀力发展规律,研究试样初始干密度、初始吸力和尺寸效应对其膨胀力各向异性特征的影响。试验结果显示,轴向膨胀力和径向膨胀力均随着试样初始干密度的增加呈指数增大,膨胀力各向异性特征愈加显著。轴向膨胀力和径向膨胀力均随着试样初始吸力的增加而呈减小趋势;相同初始吸力条件下,径向膨胀力均大于轴向膨胀力,但是膨胀力各向异性系数随着初始吸力增大而不断减小。试样尺寸对膨胀力有显著影响,增加试样高度,轴向膨胀力不断增加,径向膨胀力增加到某一数值后不再随高度增加,膨胀力各向异性系数随着试样高度的增加逐渐减小。最后,基于膨润土膨胀机理、压实效应和尺寸效应,分析了膨胀力各向异性特征的形成机理。  相似文献   

9.
用压力板法、滤纸法和饱和盐溶液蒸汽平衡法研究了孔隙比对全吸力范围内南阳膨胀土压实样土水特性的影响。试验结果表明:联合压力板法和蒸汽平衡法可以较好地测量出全吸力范围内南阳膨胀土土水特征曲线的脱湿曲线,其土水特征曲线在吸力超过进气值后近似为一条直线,没有明显的过渡段;在干湿循环过程中,膨胀土的胀缩变形并不完全可逆;不同初始孔隙比的试样在脱湿与吸湿过程中均存在明显的滞回效应,并且初始孔隙比越大,反映在土水特征曲线上的滞回效应越明显;全吸力范围内以含水率表示的不同初始孔隙比土水特征曲线随着吸力的增大逐渐趋于一致;全吸力范围内以饱和度表示的土水特征曲线随着初始孔隙比的增大,整体向上移动;当含水率趋于零的时候,南阳膨胀土的吸力小于1 000 MPa,其最大吸力大致在500~600 MPa。  相似文献   

10.
针对具有双孔隙结构(即集聚体间和集聚体内孔隙)及双峰持水曲线的内乡膨胀土压实样,进行了一系列宽广吸力范围内非饱和土三轴剪切试验及峰值强度演化规律的研究。试验结果表明:在净应力相同的条件下,中低吸力下的应力应变关系为应变硬化,伴随明显的剪缩变形;高吸力下为峰值后软化,在经历了1%~3%的体积收缩变形之后开始出现剪胀。试样的脆性随吸力的增加而增长,在中低吸力下呈桶形或中心鼓形的延性破坏模式,在高吸力下发生应变局部化现象,伴随着明显的剪切带出现。此外,脆性增加了峰后软化的幅度,表现为峰值偏应力与残余破坏状态之间的差值增大。基于区分毛细和吸附作用的双峰持水曲线(SWRC)模型,针对内乡膨胀土与其它具有双孔隙结构及双峰SWRC的土体在毛细吸应力空间进行了峰值强度分析,将吸力从孔隙应力尺度乘以毛细饱和度变为骨架应力尺度时,其呈现的强度包络线为双折线特征。理论分析表明,低吸力范围内,双孔隙结构非饱和土的抗剪强度由饱和强度与毛细吸应力贡献;高吸力范围内,抗剪强度应由饱和强度、毛细吸应力与胶结作用提供。  相似文献   

11.
为研究膨胀土的应力状态对其持水特性和变形特征的影响,以南阳膨胀土为对象,模拟不同一维覆土压力(0,40,100,200 kPa)下膨胀土的土体水分特征,提出考虑覆土压力效应的土–水特征曲线(soil-water characteristic curve,SWCC)模型并探讨方程拟合过程。结果表明:(1)各覆土压力下南阳膨胀土含水率随基质吸力呈规律性变化并表现出"双峰"形态,膨胀土持水量随覆土压力的增大而减少,200 kPa覆土压力下边界效应段II显著延长。(2)土体孔隙比均随覆土压力和基质吸力的增大而减小,覆土压力引起的孔隙比降幅是基质吸力引起的孔隙比降幅的2.12倍,应力作用下孔隙体积变化规律由覆土压力导致的粒间孔隙失水占主导地位。(3)基于分段思想改进双峰Fredlund-Xing方程,对南阳膨胀土实测数据进行曲线拟合,拟合参数a_1和n_1能有效反映不同覆土压力下SWCC1的特征点及特征吸力域的变化规律;对于SWCC2,覆土压力的影响减弱,各参数与覆土压力关系不显著。研究可为定量表征膨胀土的水力–力学耦合效应和双峰SWCC模型的建立提供参考。  相似文献   

12.
为了研究干湿循环和体积变化对膨胀土土水特征曲线的影响,利用改进的非饱和土真三轴仪,对经历不同干湿循环后的弱膨胀土进行脱湿试验,测得每级脱湿稳定后的质量含水率和孔隙比。试验结果表明:干湿循环次数越大,饱和后的孔隙比越大,而脱湿后的孔隙比越小。干湿循环后膨胀土的含水率和孔隙比随着吸力的增大而减小;在基质吸力的增大作用下,质量含水率–吸力关系曲线、饱和度–吸力关系曲线出现交叉现象,孔隙比–吸力关系曲线出现交叉聚拢现象;干湿循环次数越大,脱湿完成后膨胀土的体积含水率和饱和度越小,体现了干湿循环后膨胀土的土水特征与体变特性的耦合效应。以Fredlund-Xing模型为基础,构建以质量含水率表达的考虑干湿循环影响的SWCC方程,再建立考虑干湿循环影响的膨胀土的体变方程,最后得出以饱和度表达的考虑干湿循环和体积变化影响的SWCC方程,这3个模型均能够很好地描述不同干湿循环后膨胀土的质量含水率、孔隙比和饱和度的变化规律。  相似文献   

13.
通过不同初始孔隙比条件下的土水特征试验及增湿试验,研究了膨胀土的土水特征曲线拟合参数及体积膨胀曲线拟合参数与初始孔隙比的关系,采用曲面拟合法建立了孔隙比与重量含水率及初始孔隙比的关系曲面、孔隙比与吸力及初始孔隙比的关系曲面、重量含水率与吸力及初始孔隙比的关系曲面、体积含水率与吸力及初始孔隙比的关系曲面。试验结果表明,在重量含水率(或吸力)–初始孔隙比–孔隙比坐标系中的体变曲面由饱和部分及非饱和部分组成;在增湿过程中,曲面由非饱和区进入饱和区的转折点对应的重量含水率随着初始孔隙比的增大而增大,转折点对应的吸力随着初始孔隙比的增大而减小;在吸力–初始孔隙比–重量含水率或体积含水率坐标系中,与特定初始孔隙比对应的土水特征曲线是纵坐标恒定的平面曲线;在吸力–孔隙比–重量含水率或体积含水率坐标系中,与特定初始孔隙比对应的土水特征曲线是纵坐标在变化空间曲线,它能同时表示初始孔隙比的影响及试验过程中孔隙比的变化。  相似文献   

14.
基质吸力和净平均应力的增大均可引起土体的压缩变形。针对物理性质不同的4种非饱和膨胀土体结合试样收缩曲线和土水特征曲线分析了土体干燥过程中基质吸力和孔隙比的关系。试验结果表明:土体干燥收缩过程中随着基质吸力的增大试样不断发生收缩,当基质吸力增大到某一定值时,基质吸力的增大对试样收缩变形无明影响,称此基质吸力为缩限吸力。并且不同性质土体的缩限吸力不相同,缩限吸力值与土体的塑性指数密切相关。在干燥收缩过程中,当试验的饱和度减小到85%时试样完成了绝大部分收缩,当试验饱和度达到70%时土样的孔隙比基本保持不变。  相似文献   

15.
路基土动态回弹模量MR是路面设计和使用性能评价采用的关键参数,运营期间受含水率变化影响显著。以压实红黏土为研究对象,制备了6个不同含水率和3种不同压实度的试样,采用滤纸法测试了不同状态下的基质吸力,并通过动三轴试验研究了含水率、压实度、动偏应力和围压对动态回弹模量的影响。试验结果表明:MR随压实度、围压的增大而增大,随动偏应力增大呈非线性减小;MR随含水率增大急剧降低,从最佳含水率增加4.5%时,不同压实度下MR均降低约50%,动偏应力和压实度对MR的影响随含水率增大逐渐减弱;MR随含水率和饱和度的变化规律与土性显著相关,而不同土样的MR随基质吸力变化趋势基本一致。进而引入基质吸力,建立了综合考虑含水率和应力水平影响的压实路基土MR预估模型,通过本文和文献试验数据证实了该模型的适用性,并基于13种土样的试验结果建立了模型参数与物性指标之间的经验关系。  相似文献   

16.
土体压缩是岩土工程领域的基本问题。压缩过程中非饱和土的力学与水力学行为是同时发生且相互影响的,有必要统一考察体变特征与持水特性的水力耦合效应。为此,以荆门弱膨胀土为研究对象,开展土中水密度试验、饱和与控制吸力下的非饱和一维压缩试验,准确测量了压缩与卸荷回弹过程中孔隙比–重力含水率–吸力–竖向净应力关系,探讨了水力耦合状况下非饱和膨胀土的体变特征与持水特性规律,并建立相应本构描述。结论如下:1加载段,非饱和压缩曲线均发生明显转折,体现出屈服行为;随吸力增大,压缩曲线依次发生"穿越"现象;卸载段大体呈线性,其斜率随吸力增大而降低。提出能够描述干缩、压缩、卸荷体胀、屈服、压缩性与卸荷回弹性随吸力变化等行为的非饱和土体变方程,可直接用于分层总和法计算。2不同吸力下重力含水率变化存在较大差异;压缩至2941.8 k Pa时,不同吸力下含水率非常接近。吸力与竖向净应力对含水率变化的耦合影响可用3参数Logistic函数描述。3压缩过程中饱和度随竖向净应力增大而增大,卸荷过程中随竖向净应力降低亦增大。采用饱和度或重力含水率,对压缩过程中的水力路径会出现"湿化"与"脱湿"的不同判断,即水力耦合状况下土体表现出复杂的持水状态变化特征。  相似文献   

17.
渗水系数是非饱和土固结分析的关键参数之一。用自制的非饱和土三轴剪切渗透仪,在无应力及不同等向应力下分别对不同和相同孔隙比的原状黄土进行了直接向试样分级注水使吸力逐渐减小的增湿渗透试验,分析了孔隙比,应力与饱和度及吸力对增湿渗水系数的影响,对比分析了无应力与应力作用下的渗水特性,提出了可以考虑应力与饱和度或吸力影响的非饱和原状黄土增湿渗水的渗透性函数。研究结果表明:孔隙比和应力对渗水系数与饱和度关系及渗水系数与吸力关系皆有影响,吸力较大时对后者几乎没有影响,可近似归一。无应力及不同应力条件下,只要孔隙比相同,则渗水系数与饱和度或吸力关系相同;相对渗水系数与吸力的关系不能归一,同一吸力对应的相对渗水系数随孔隙比的减小或应力的增大而增大,而相对渗水系数与饱和度及吸力比(吸力与脱气值之比)关系皆可以归一。v G-M模型不适用于描述常孔隙比下原状黄土的渗水系数;提出的渗透函数可以预测一定等向应力作用下增湿过程中饱和度增大及吸力减小时原状黄土的渗水系数,预测结果与试验结果吻合较好。  相似文献   

18.
加湿条件下膨胀土土水特征曲线的试验研究   总被引:1,自引:0,他引:1  
以合肥市膨胀土为研究对象,利用渗析法和滤纸法试验测得土体不同初始干密度下重力含水率与基质吸力的关系;利用加湿试验测得土样加湿时孔隙比与重力含水率的关系。基于理论分析,求得土体在不同初始干密度下考虑体积膨胀的体积含水率与基质吸力的关系。结果表明:不同初始干密度对应的重力含水率-基质吸力曲线在曲线中部大致重合;不同初始干密度对应的体积含水率-基质吸力曲线与重力含水率-基质吸力曲线的形状有所区别;土样接近饱和时,各初始干密度对应的体积含水率-基质吸力曲线出现交叉。  相似文献   

19.
吸力对非饱和膨胀土抗剪强度及剪胀特性的影响   总被引:3,自引:0,他引:3       下载免费PDF全文
利用非饱和土直剪仪进行原状样和压实样的控制吸力直剪试验以研究吸力对非饱和膨胀土抗剪强度和剪胀性状的影响。试验结果表明:该膨胀土原状样和压实样的剪胀势随着吸力增加而增大。吸力对该膨胀土抗剪强度的贡献可归结于两种不同的机理:①吸力使得土体中粒间有效应力增加;②吸力对土体剪胀势的贡献。由于吸力对土体剪胀势的贡献,吸力对该膨胀土峰值强度的贡献大于其对峰后软化强度的贡献。当吸力相同时,原状样的峰值强度和剪胀势均高于压实样,这与原状样中铁锰结核的胶结作用有关。吸力对该膨胀土抗剪强度的贡献高于压实高岭土。  相似文献   

20.
压实土受力压缩过程中的吸力变化   总被引:1,自引:0,他引:1  
崔凯 《工程勘察》2009,(8):13-18
压实土在岩土工程中被广泛应用。为了确保压实土体的稳定性,需要很好地掌握此类土在水-力耦合作用下的体积变化特性。通常采用有限元分析原理来评估压实土在水-力耦合作用下的压缩特性。目前大多数的有限元模型使用全应力来计算压缩应变,忽略了一个重要的非饱和力学变量,即压缩过程中的吸力变化。本文通过分析压缩试验中压实土吸力的变化来评估总应力假设的可行性,证实土的结构和初始条件对吸力变化的影响,分析可能反映吸力变化的各种指示参数,例如土的先期固结应力σp和饱和度Sτ。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号