首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The degradation and recovery behavior of the device performance of Ge diodes and p-Ge MOSFETs irradiated by 2-MeV electrons are studied. For diodes, it is noted that both the reverse and forward current increase after irradiation. However, an interesting observation is that the forward current decreases after irradiation for a forward voltage larger than ∼0.7 V. This reduction can be explained by an increased resistivity of the n-well in the germanium substrate. For the transistors, after irradiation, a slight negative shift of the threshold voltage and a decrease of the drain current input and output characteristics have been observed together with a decrease of the hole mobility. This is mainly due to the increase of the absolute value of the threshold voltage induced by positive charges in the gate oxide. The degradation recovers by thermal annealing after irradiation. For 1 × 1017 e/cm2, the diode performance almost completely recovers to the initial condition after a 250 °C annealing and the anneal process is characterized by an activation energy of 0.59 eV. For transistor irradiated to 5 × 1017 e/cm2, the device performance also recovers but with an activation energy of 0.33 eV.  相似文献   

2.
Results of a study of electrically active defects induced in Sb-doped Ge crystals by implantations of hydrogen and helium ions (protons and alpha particles) with energies in the range from 500 keV to 1 MeV and doses in the range 1×1010–1×1014 cm−2 are presented in this work. Transformations of the defects upon post-implantation isochronal anneals in the temperature range 50–350 °C have also been studied. The results have been obtained by means of capacitance–voltage (CV) measurements and deep-level transient spectroscopy (DLTS).It was found from an analysis of DLTS spectra that low doses (<5×1010 cm−2) of H and He ion implantations resulted in the introduction of damage similar to that observed after MeV electron irradiation. The Sb–vacancy complex was the dominant deep-level defect in the lightly implanted samples. After implantations with doses higher than 5×1010 cm−2 peaks due to more complex defects were observed in the DLTS spectra. Implantations with heavy (5×1013 cm−2) doses of both H and He ions caused the formation of a sub-surface layer with a high (up to 1×1017 cm−3) concentration of donors. These donors were eliminated by anneals at temperatures in the range 100–200 °C. Heat treatments of the heavy proton-implanted Ge samples in the temperature range 250–300 °C resulted in the formation of shallow hydrogen-related donors, the concentration of which was the highest in a region close to the projected depth of implanted protons. The maximum peak concentration of the H-related donors was higher than 1×1015 cm−3 for a proton implantation dose of 1×1014 cm−2.  相似文献   

3.
Results of an extensive study on the irradiation damage and its recovery behavior resulting from thermal annealing in AlGaAs/GaAs pseudomorphic high electron mobility transistors (HEMTs) subjected to a 220-MeV carbon, 1-MeV electrons and 1-MeV fast neutrons are presented. The drain current and effective mobility decrease after irradiation, while the threshold voltage increases in positive direction. The decrease of the drain current and mobility is thought to be due to the scattering of channel electrons with the induced lattice defects and also to the decrease of the electron density in the two dimensional electron gas region. Isochronal thermal annealing shows that the device performance degraded by the irradiation recovers. The decreased drain current for output characteristics recovers by 75% of pre-rad value after 300°C thermal annealing for AlGaAs HEMTs irradiated by carbon particles with a fluence of 1×1012 cm−2. The influence of the materials and radiation source on the degradation is also discussed with respect to the nonionizing energy loss. Those are mainly attributed to the difference of particle mass and the probability of nuclear collision for the formation of lattice defect in Si-doped AlGaAs donor layer. A comparison is also made with results obtained on irradiated InGaP/InGaAs p-HEMTs in order to investigate the effect of the constituent atom. The damage coefficient of AlGaAs HEMTs is also about one order greater than that of InGaP HEMTs for the same radiation source. The materials and radiation source dependence of performance degradation is mainly thought to be attributed to the difference of mass and the possibility of nuclear collision for the formation of lattice defects in Si-doped donor layer.  相似文献   

4.
The d.c. characteristics of InGaAs/InP single heterojunction bipolar transistors (SHBTs) were studied for the first time under high energy (1 MeV) electron radiation of cumulative dose up to 5.4×1015 electrons/cm2. No degradation was observed for electron doses below 1015/cm2. For electron doses greater than 1015/cm2 the following degradation effects were observed: (1) decrease in collector current; (2) decrease in current gain up to 50%; (3) an increase in collector saturation voltage by 0.2–0.8 V depending on base current; and (4) increase in output conductance. The degradation of collector current and current gain are thought to be due to increased recombination caused by radiation-induced defects in the base–emitter junction. The increase in collector saturation voltage is attributed to an increase in emitter contact resistance after irradiation. The increase in the avalanche multiplication in the reverse biased base–collector junction caused by radiation induced defects is believed to be responsible for increased output conductance after irradiation.  相似文献   

5.
Deep level defects in both p+/n junctions and n-type Schottky GaN diodes are studied using the Fourier transform deep level transient spectroscopy. An electron trap level was detected in the range of energies at EcEt=0.23–0.27 eV with a capture cross-section of the order of 10−19–10−16 cm2 for both the p+/n and n-type Schottky GaN diodes. For one set of p+/n diodes with a structure of Au/Pt/p+–GaN/n–GaN/n+–GaN/Ti/Al/Pd/Au and the n-type Schottky diodes, two other common electron traps are found at energy positions, EcEt=0.53–0.56 eV and 0.79–0.82 eV. In addition, an electron trap level with energy position at EcEt=1.07 eV and a capture cross-section of σn=1.6×10−13 cm2 are detected for the n-type Schottky diodes. This trap level has not been previously reported in the literature. For the other set of p+/n diodes with a structure of Au/Ni/p+–GaN/n–GaN/n+–GaN/Ti/Al/Pd/Au, a prominent minority carrier (hole) trap level was also identified with an energy position at EtEv=0.85 eV and a capture cross-section of σn=8.1×10−14 cm2. The 0.56 eV electron trap level observed in n-type Schottky diode and the 0.23 eV electron trap level detected in the p+/n diode with Ni/Au contact are attributed to the extended defects based on the observation of logarithmic capture kinetics.  相似文献   

6.
In this work hafnium oxide (HfO2) was deposited by r.f. magnetron sputtering at room temperature and then annealed at 200 °C in forming gas (N2+H2) and oxygen atmospheres, respectively for 2, 5 and 10 h. After 2 h annealing in forming gas an improvement in the interface properties occurs with the associated flat band voltage changing from −2.23 to −1.28 V. This means a reduction in the oxide charge density from 1.33×1012 to 7.62×1011 cm−2. After 5 h annealing only the dielectric constant improves due to densification of the film. Finally, after 10 h annealing we notice a degradation of the electrical film's properties, with the flat band voltage and fixed charge density being −2.96 V and 1.64×1012 cm−2, respectively. Besides that, the leakage current also increases due to crystallization. On the other hand, by depositing the films at 200 °C or annealing it in an oxidizing atmosphere no improvements are observed when comparing these data to the ones obtained by annealing the films in forming gas. Here the flat band voltage is more negative and the hysteresis on the CV plot is larger than the one recorded on films annealed in forming gas, meaning a degradation of the interfacial properties.  相似文献   

7.
We studied the degradation of AlGaN/GaN High Electron Mobility Transistors (HEMT) after 2-MeV alpha irradiation for two different fluences, namely 1013α/cm2 and 1014α/cm2. After the exposure and depending on the irradiation fluence, we observed a drop both in drain current and transconductance, and a reduction in the leakage current of the gate diode. We attributed these effects to bulk damage, radiation-induced formation of deep-level trap sites in the channel layer, and doping compensation/removal in the barrier layer.  相似文献   

8.
MOSFETs and MOSCs incorporating HfO2 gate dielectrics were fabricated. The IDSVDS, IDSVGS, gated-diode and CV characteristics were investigated. The subthreshold swing and the interface trap density were obtained. The surface recombination velocity and the minority carrier lifetime in the field-induced depletion region measured from the gated diodes were about 2.73 × 103 cm/s and 1.63 × 10−6 s, respectively. The effective capture cross section of surface state was determined to be 1.6 × 10−15 cm2 using the gated-diode technique in comparison with the subthreshold swing measurement. A comparison with conventional MOSFETs using SiO2 gate oxide was also made.  相似文献   

9.
The performance degradation of the I/V and C/V characteristics of Si1−xGex S/D diodes irradiated by 2-MeV electrons and 70-MeV protons was investigated. After irradiation, the reverse current increases, while the forward current and reverse capacitance decrease. Based on considerations of the damage factor and coefficient for different fluences and radiation sources, the radiation damage becomes smaller with increase in germanium content. Also, for proton irradiation, the damage is about three orders of magnitude larger than for electrons due to the difference of particle mass and collision probability to produce displacement damage.  相似文献   

10.
Proton irradiation of Sc2O3/GaN and Sc2O3/MgO/GaN metal-oxide semiconductor diodes was performed at two energies, 10 MeV and 40 MeV, and total fluences of 5 × 109 cm−2, corresponding to 10 years in low-earth orbit. The proton damage causes a decrease in forward breakdown voltage and a flat-band voltage shift in the capacitance-voltage characteristics, indicating a change in fixed oxide charge and damage to the dielectric. The interface state densities after irradiation increased from 5.9 × 1011 cm−2 to 1.03 × 1012 cm−2 in Sc2O3/GaN diodes and from 2.33 × 1011 to 5.3 × 1011 cm−2 in Sc2O3/MgO/GaN diodes. Postannealing at 400°C in forming gas recovered most of the original characteristics but did increase the interfacial roughness.  相似文献   

11.
Vertical Schottky rectifiers have been fabricated on a free-standing n-GaN substrate. Circular Pt Schottky contacts with different diameters (50 μm, 150 μm and 300 μm) were prepared on the Ga-face and full backside ohmic contact was prepared on the N-face by using Ti/Al. The electron concentration of the substrate was as low as 7 × 1015 cm−3. Without epitaxial layer and edge termination scheme, the reverse breakdown voltages (VB) as high as 630 V and 600 V were achieved for 50 μm and 150 μm diameter rectifiers, respectively. For larger diameter (300 μm) rectifiers, VB dropped to 260 V. The forward turn-on voltage (VF) for the 50 μm diameter rectifiers was 1.2 V at the current density of 100 A/cm2, and the on-state resistance (Ron) was 2.2 mΩ cm2, producing a figure-of-merit (VB)2/Ron of 180 MW cm−2. At 10 V bias, forward currents of 0.5 A and 0.8 A were obtained for 150 μm and 300 μm diameter rectifiers, respectively. The devices exhibited an ultrafast reverse recovery characteristics, with the reverse recovery time shorter than 20 ns.  相似文献   

12.
Current-voltage (I–V) characteristics of n- and p-type 6H−SiC Schottky diodes are compared in a temperature range of room temperature to 400°C. While the room temperature I–V characteristics of the n-type Schottky diode after turn-on is more or less linear up to ∼100 A/cm2, the I–V characteristics of the p-type Schottky diode shows a non-linear behavior even after turn-on, indicating a variation in the on-state resistance with increase in forward current. For the first time it is shown that at high current densities (>125 A/cm2) the forward voltage drop across p-type Schottky diodes is lower than that across n-type Schottky diodes on 6H−SiC. High temperature measurements indicate that while the on-state resistance of n-type Schottky diodes increases with increase in temperature, the on-state resistance of p-type Schottky diodes decreases with increase in temperature up to ∼330 K.  相似文献   

13.
Zinc oxide is generally considered to be radiation hard, although there are few experimental reports supporting this assertion. In this paper, we present results on the changes in electrical performance of bulk Pt/ZnO Schottky rectifiers exposed to 40-MeV protons at fluences from 5×109 cm−2 to 5×1010 cm−2. These doses correspond to more than 10 years or 100 years, respectively, in low-earth satellite orbit. The reverse breakdown voltage of the ZnO diodes increased from ∼3.6V in unirradiated devices to ∼4 V after the highest proton dose. The effective barrier height decreased with proton dose, while the diode ideality factor increased from 1.8 to 1.9 for the highest dose. These devices appear promising for both aerospace and terrestrial applications where irradiation hardness is a prerequisite. The main degradation mechanism appears to be creation of recombination centers and traps.  相似文献   

14.
The influence of high energy electron (HEE) irradiation from a Sr-90 radio-nuclide on n-type Ni/4H–SiC samples of doping density 7.1×1015 cm−3 has been investigated over the temperature range 40–300 K. Current–voltage (I–V), capacitance–voltage (C–V) and deep level transient spectroscopy (DLTS) were used to characterize the devices before and after irradiation at a fluence of 6×1014 electrons-cm−2. For both devices, the I–V characteristics were well described by thermionic emission (TE) in the temperature range 120–300 K, but deviated from TE theory at temperature below 120 K. The current flowing through the interface at a bias of 2.0 V from pure thermionic emission to thermionic field emission within the depletion region with the free carrier concentrations of the devices decreased from 7.8×1015 to 6.8×1015 cm−3 after HEE irradiation. The modified Richardson constants were determined from the Gaussian distribution of the barrier height across the contact and found to be 133 and 163 A cm−2 K−2 for as-deposited and irradiated diodes, respectively. Three new defects with energies 0.22, 0.40 and 0.71 eV appeared after HEE irradiation. Richardson constants were significantly less than the theoretical value which was ascribed to a small active device area.  相似文献   

15.
Heterojunction diodes consisting of n-type ZnO and p-type ZnTe were grown by pulsed laser deposition and molecular beam epitaxy, respectively, on GaAs (001) substrates. Strong diode rectifying behavior was observed in the current–voltage characteristics with a current on/off ratio of J on /J off = 1 × 105 and a diode ideality factor of n = 1.5. A strong photoresponse in the energy range of 2.3 eV to 3.6 eV was observed, corresponding to the bandgap energies of ZnTe and ZnO, respectively. A photovoltaic response was observed with a relatively small fill factor with a short-circuit current J sc ~ 0.8 mA/cm2 and open-circuit voltage of V oc ~ 60 mV subject to illumination by a tungsten lamp. The photovoltaic response and reverse saturation current are believed to be limited by defects related to the mismatch between the ZnTe and ZnO structures and defects in the ZnO layer deposited at low temperature. The spectral response of the diodes is modeled with a close match to experimental measurements.  相似文献   

16.
We report the effect of irradiation using 10 MeV high energy proton beams on pentacene organic field-effect transistors (OFETs). The electrical characteristics of the pentacene OFETs were measured before and after proton beam irradiation with fluence (dose) conditions of 1012, 1013, and 1014 cm−2. After proton beam irradiation with fluences of 1012 or 1013 cm−2, the threshold voltage of the OFET devices shifted to the positive gate voltage direction with an increase in the current level and mobility. In contrast, for a high proton beam fluence condition of 1014 cm−2, the threshold voltage shifted to the negative gate voltage direction with a decrease in the current level and mobility. It is evident from the electrical characteristics of the pentacene OFETs treated with a self-assembled monolayer that these experimental observations can be attributed to the trapped charges in the dielectric layer and pentacene/SiO2 interface. Our study will enhance the understanding of the influence of high energy particles on organic field-effect transistors.  相似文献   

17.
Au Schottky barrier diodes (SBDs) have been irradiated using high-energy carbon ion fluences of 1×1011, 1×1012 and 1×1013 cm−2. Current–voltage characteristics of unirradiated and irradiated diodes have been analyzed. The change in reverse leakage current increases with increasing ion fluence due to the irradiation-induced defects at the interface. The diodes were annealed at 523 and 623 K to study the effect of annealing. The rectifying behavior of the irradiated SBDs improves at 523 K. But at 623 K, the diode behavior deteriorates irrespective of the fluences. Better enhancement in the barrier height and also improvement in the ideality factor of the diodes has been observed at the annealing temperature of 523 K. Scanning Electron Microscopic analysis was carried out on the irradiated samples to delineate the projected range of the defects by high-energy carbon ion irradiation.  相似文献   

18.
High-voltage 4H-SiC junction-barrier Schottky (JBS) diodes have been fabricated and studied. The working area of the diodes (anode contact area) is 1.44 mm2. At currents in the range from 10−11 to 1.5 A, the forward current-voltage characteristic of the diodes is described in terms of the thermionic emission model, with the series resistance taken into account: Schottky barrier height ΦB = 1.16 eV, ideality factor n = 1.01, and series resistance R s = 2.2 Ω (32 mΩ cm2). The value of R s is governed by the resistance of the blocking epitaxial n-base (impurity concentration N = 9 × 1014 cm−3, n-layer thickness d = 34 μm). The diodes can block a reverse voltage of at least 3.3 kV (with a leakage current at room temperature on the order of 1 μA). It is suggested that the leakage mechanism is associated with crystal lattice defects (dislocations) in SiC. It is shown that the reverse-recovery characteristics of the diodes are determined by the flow of a purely capacitive reverse current.  相似文献   

19.
ZrO2 thin films with a smooth surface were synthesized on silicon by atomic vapor deposition™ using Zr[OC(CH3)3]4 as precursor. The maximum growth rate (7 nm min−1) and strongest crystalline phase were obtained at 400 °C. The increase of the deposition temperature reduced the deposition rate to 0.5 nm min−1 and changed the crystalline ZrO2 phase from cubic/tetragonal to monoclinic. These films showed no enhancement of the dominating monoclinic phase by annealing. The values of the dielectric constant (up to 32) and leakage current density (down to 1.2×10−6 A cm−2 at 1×106 V cm−1) varied depending on the deposition temperature and film thickness. The midgap density of interface states was Nit=5×1011 eV−1 cm−2. The leakage current and the density of interface states were lowered by the annealing to 10−7 A cm−2 at 1×106 V cm−1 and to 1010 eV−1 cm−2, respectively. However, this also led to a decrease of the dielectric constant.  相似文献   

20.
Heterojunction bipolar transistor (HBTs) based on Al0.15Ga0.85 N/6H–SiC heterojunction was fabricated. Room-temperature current–voltage (IV) characteristics of n-Al0.15Ga0.85 N/p-6H–SiC emitter–base heterojunction exhibited good rectifying behavior with a forward current 5 × 10−2 A and reverse current 3 × 10−9 A at 10 V and −10 V, respectively. Analysis of the temperature dependent IV characteristics of this heterojunction revealed a barrier height of 1.1 eV. The fabricated n-Al0.15Ga0.85 N/p-SiC/n-SiC bipolar transistor did not exhibit common-emitter operation, however, common-base operation was observed with current gain β = IC/IB ranging in 75–100.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号