首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A 65 wt % yield of hexane-soluble liquid, containing 83% of the feed carbon, was obtained when Finnish Carex-peat pyrolysate was hydrotreated batchwise (21.5 MPa for two hours at 390°C with 10 wt % catalyst, 4% CoO/15.5% MoO3 on γ-alumina). Oxygen content was lowered from 22% to 3% in the process. Nitrogen and sulphur contents of the product were 4.3% and 0.10%, respectively. Straight-chain material predominated in the upgraded product and C14-C29 n-alkanes have been identified along with some phenols. The peat pyrolysate is also predominantly straight-chain material, but contains polar functionalities such as the carboxyl group.  相似文献   

2.
In this article, to miniaturize the hydrogenation reactor and make the H2O2 production with more safety a gas‐liquid microdispersion system was generated to intensify the process of catalytic hydrogenation of ethylanthraquinone by passing the gas‐liquid microdispersion system through a generally packed bed reactor. A microdispersion device with a 5 μm pore size microfiltration membrane as the dispersion medium has been developed and microbubbles in the size of 10–100 μm were successfully generated. The reaction and mass transfer performance was evaluated. The conversion of ethylanthraquinone as much as 35% was realized in less than 3.5 s. The overall volume mass transfer coefficient in the microdispersion reaction system reached in the range of 1–21 s?1, more than two orders of magnitude larger than the values in normal gas‐liquid trickle‐bed reactors. A mathematical model in the form of Sh = 2.0 + 54.7Sc1/3We1/2?1/10 has been firstly suggested, which can well predict the overall mass transfer coefficient. © 2011 American Institute of Chemical Engineers AIChE J, 2012  相似文献   

3.
The effect of α‐ and β‐nucleating agents (NA) of various amounts on the fracture behavior of polypropylene‐co‐ethylene (CPP) was evaluated using the essential work of fracture (EWF) method. The specific EWF values of CPPs incorporated with α‐NA of different amount were all lower than that of pure CPP, while the specific nonessential work of fracture was the highest at relative low α‐NA loading (0.1 wt %), and then decreased with further increasing amount of α‐NA. Similar trend of variation was observed with increasing amount of β‐NA in CPP, and it was found that the variation of Kβ for β‐NA nucleated CPP versus NA content accorded well with the EWF versus NA content, which indicated that the addition of β‐NA could lead to effectively increased β‐crystal content and consequently improved fracture resistance of CPP. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

4.
A series of pH‐thermoreversible hydrogels that exhibited volume phase transition was synthesized by various molar ratios of N‐isopropylacrylamide (NIPAAm), acrylamide (AAm), and 2‐hydroxyethyl methacrylate (HEMA). The influence of environmental conditions such as temperature and pH value on the swelling behavior of these copolymeric gels was investigated. Results showed that the hydrogels exhibited different equilibrium swelling ratios in different pH solutions. Amide groups could be hydrolyzed to form negatively charged carboxylate ion groups in their hydrophilic polymeric network in response to an external pH variation. The pH sensitivities of these gels also depended on the AAm content in the copolymeric gels; thus the greater the AAm content, the higher the pH sensitivity. These hydrogels, based on a temperature‐sensitive hydrogel, demonstrated a significant change of equilibrium swelling in aqueous media between a highly solvated, swollen gel state and a dehydrated network response to small variations of temperature. pH‐thermoreversible hydrogels were used for a study of the release of a model drug, caffeine, with changes in temperature. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 221–231, 1999  相似文献   

5.
Mathematical modelling of a continuous fluidized‐bed reactor has been carried out for non‐catalytic gas–solid reactions. The two‐phase bubbling bed model has been used and the elutriation phenomenon for the fine particles has been investigated. The feed stream consisting particles with size distribution and reversible or irreversible first‐order kinetics can be treated by the model. The reduction behaviour of solid reactants was described by the grain model. A program was developed in MATLAB software for solving the governing equations at conditions of different temperatures and pressures. The model was validated using experimental data and simulation results available in the literature for the iron ore reduction with a gas mixture containing hydrogen [Srinivasan and Staffansson, Chem. Eng. Sci. 45(5), 1253–1265 (1990)]. The mathematical modelling was also used for predicting the extent of reaction for reduction of cobalt oxide by methane.  相似文献   

6.
The sharp loss‐in‐capacity in CO2 capture as a result of sintering is a major drawback for CaO‐based sorbents used in the calcium looping process. The decoration of inert supports effectively stabilizes the cyclic CO2 capture performance of CaO‐based sorbents via sintering mitigation. A range of Al‐decorated and Al/Mg co‐decorated CaO‐based sorbents were synthesized via an easily scaled‐up spray‐drying route. The decoration of Al‐based and Al/Mg‐based supports efficiently enhanced the cyclic CO2 capture capability of CaO‐based sorbents under severe testing conditions. The CO2 capture capacity losses of Al‐decorated and Al/Mg co‐decorated CaO‐based sorbents were alleviated, representing more stable CO2 capture performance. The stabilized CO2 capture performance is mainly attributed to the formation of Ca12Al14O33, MgAl2O4, and MgO that act as the skeleton structures to mitigate the sintering of CaCO3 during carbonation/calcination cycles.  相似文献   

7.
8.
9.
Superabsorbent resins prepared by ultraviolet radiation‐inducing polymerization techniques with acrylic acid/acrylamide were treated with supercritical carbon dioxide (SC‐CO2). The water‐absorbing properties of the treated resins were greatly improved. The water‐absorbing properties of resins treated with SC‐CO2 in the pressure range of 10–35 MPa and the temperature range of 40–60°C were studied. The effects of the treatment time and depressurizing speed of CO2 after treatment were also examined. Obviously, different results were found for particles of different sizes. Smaller particles were more efficient under the same treatment conditions. Samples were tested with differential scanning calorimetry. The results showed that the plasticizing effect of CO2 reduced the glass‐transition temperature of the polymer, and it was proposed that the plasticization effect might have led to polymer chain redistribution and better flexibility. Minor changes in the surface morphology of the particles were observed with scanning electron microscopy. The extraction of the unpolymerized monomers by SC‐CO2 was also studied. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 2272–2278, 2002  相似文献   

10.
Carbon-coated Ni, Co and Ni-Co alloy catalysts were prepared by the carbonization of the metal doped resorcinol-formaldehyde resins synthesized by the one-pot extended Stöber method. It was found that the introduction of Co remarkably reduced the carbon microsphere size. The metallic Ni, Co, and Ni-Co alloy particles (mainly 10–12 nm) were uniformly distributed in carbon microspheres. A charge transfer from Ni to Co appeared in the Ni-Co alloy. Compared with those of metallic Ni and Co, the d-band center of the Ni-Co alloy shifted away from and toward the Fermi level, respectively. In the in-situ aqueous phase hydrodeoxygenation of methyl palmitate with methanol as the hydrogen donor at 330 °C, the decarbonylation/decarboxylation pathway dominated on all catalysts. The Ni-Co@C catalysts gave higher activity than the Ni@C and Co@C catalysts, and the yields of n-pentadecane and n-C6n-C16 reached 71.6% and 92.6%, respectively. The excellent performance of Ni-Co@C is attributed to the electronic interactions between Ni and Co and the small carbon microspheres. Due to the confinement effect of carbon, the metal particles showed high resistance to sintering under harsh hydrothermal conditions. Catalyst deactivation is due to the carbonaceous deposition, and the regeneration with CO2 recovered the catalyst reactivity.  相似文献   

11.
A polyvinyl pyrrolidone terpolymer system is described that can be chemically cross‐linked at moderate, 70–100°C, temperatures. The system has significant potential for development of durable long‐lasting pyrrolidone coatings in a wide range of applications, particularly in water filtration membrane construction where leaching is an unresolved, serious problem. The synthesis of the terpolymer, poly(N‐vinyl‐2‐pyrrolidone‐co‐vinyl acetate‐co‐glycidyl methacrylate), by free radical polymerization is described. The reactive features of this terpolymer are presented in the context of acidic anhydride curing. In a polar aprotic solvent, the terpolymer is reacted with poly(methyl vinyl ether‐co‐maleic acid) and cured thermally. Key aspects of the terpolymer synthesis and the acid anhydride cross‐linking reaction using DSC, rheology, FTIR, and a small molecule model system to study the cross‐linking chemistry are presented. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

12.
H. M. Chishti  P. T. Williams 《Fuel》1999,78(15):1805-1815
Oil shale from the Kimmeridge Clay, of Jurassic age from the UK was pyrolysed in a 5 kg fixed bed reactor at 525°C in a nitrogen atmosphere. The derived shale oil was then hydrotreated at 15.0 Mpa pressure and 400°C in a stirred reactor with a nickel–molybdenum (Ni–Mo) catalyst and residence times from 8 to 56 h. The shale oils were analysed for polycyclic aromatic hydrocarbons (PAH) and for nitrogen-PAH (PANH) and sulphur-PAH (PASH), before and after hydrotreatment. The results showed that generally the higher molecular weight three and four ring PAH decreased with increasing hydrotreatment time, however, single ring aromatic compounds and two ring PAH were increased. Nitrogen and sulphur containing PAH were significantly reduced in concentration in the oils with increasing hydrotreatment time to reach negligible concentrations after 56 h. The reduction in PANH and PASH coincided with a reduction in the overall nitrogen and sulphur contents of the oils.  相似文献   

13.
A method of Structural Group Analysis (SGA) was used to characterize feed and liquid products from catalytic hydroprocessing using a commercial Ni-Mo catalyst. Comparison of the structural profiles revealed significant changes in the concentration of various structural groups. SGA is a promising tool for investigating chemical changes in complex reacting systems.  相似文献   

14.
Geokinetics crude shale oil, a distillate and processing intermediates sampled during four-stage catalytic hydroprocessing of the distillate were analysed for total nitrogen, basic nitrogen and olefinic and aromatic contents. Successive hydroprocessing stages yielded products containing 80, 46, 16 and 2% of the nitrogen content in the feedstock. Total nitrogen, basic nitrogen and aromatic contents were also reduced. Apparent relative reactivities of aromatic hydrocarbons and nitrogen-containing compounds are in agreement with reactivities observed in model compound studies. Hydrodenitrogenation of nitrogen-containing compounds occurred concurrently with hydrogenation of non-nitrogen-containing aromatic hydrocarbons. Hydroprocessing conditions necessary for essentially complete removal of nitrogen yielded a refined oil with low aromatic content.  相似文献   

15.
Palladium‐catalyzed decarboxylative sp‐sp2 cross‐coupling reactions of aryl and vinyl halides and triflates with α,β‐ynoic acids using silver oxide have been developed. A variety of α,β‐ynoic acids were readily decarboxylated in the presence of silver oxide and then, generated in situ, silver acetylides were coupled with electrophiles in the presence of a palladium(0) catalyst under neutral conditions, producing either symmetrical or unsymmetrical diarylacetylenes, arylalkylacetylenes and arylvinylacetylenes in good to excellent yields.  相似文献   

16.
The effect of nucleating agents on the crystallization behavior of poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) (PHBV) was studied. A differential scanning calorimeter was used to monitor the energy of the crystallization process from the melt and melting behavior. During the crystallization process from the melt, nucleating agent led to an increase in crystallization temperature (Tc) of PHBV compared with that for plain PHBV (without nucleating agent). The melting temperature of PHBV changed little with addition of nucleating agent. However, the areas of two melting peaks changed considerably with added nucleating agent. During isothermal crystallization, dependence of the relative degree of crystallization on time was described by the Avrami equation. The addition of nucleating agent caused an increase in the overall crystallization rate of PHBV, but did not influence the mechanism of nucleation and growth of the PHB crystals. The equilibrium melting temperature of PHBV was determined as 187°C. Analysis of kinetic data according to nucleation theories showed that the increase in crystallization rate of PHBV in the composite is due to the decrease in surface energy of the extremity surface. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 2145–2152, 2002  相似文献   

17.
This work reports the effect of nanogel solid particles on the surface and interfacial tension of water/air and water/styrene interfaces. Moreover, the work aimed to use nanogels as a stabilizer for miniemulsion aqueous polymerization. A series of amphiphilic crosslinked N‐isopropylacrylamide (NIPAm) and 2‐acrylamido‐2‐methylpropanesulfonic acid (AMPS) copolymer nanogels were synthesized based on an aqueous copolymerization batch method. Divinylbenzene and N,N‐methylene bisacrylamide were used as crosslinkers. The morphologies of the prepared nanogels were investigated using transmission and scanning electron microscopies. The lower critical transition temperatures were determined using differential scanning calorimetry. The surface tension of colloidal NIPAm/AMPS dispersions was measured as functions of surface age, temperature and the morphology of the NIPAm/AMPS nanogels. The NIPAm/AMPS nanogels reduced the surface tension of water to about 30.1 mN m?1 at 298 K with a small increase at 313 K. Surface activities of these nanogels in water were determined by surface tension measurements. The NIPAm/AMPS dispersions had high surface activity and were used as a stabilizer to prepare a crosslinked poly(styrene‐co‐AMPS) microgel based on emulsion crosslinking polymerization. © 2013 Society of Chemical Industry  相似文献   

18.
A series of 2‐hydroxyethyl methacrylate (HEMA) and sodium acrylate (SA50) copolymeric gels were prepared from HEMA and the anionic monomer SA50 with various molar ratios. The influence of SA50 on the copolymeric gels on their swelling behavior in deionized water at different temperatures and various pH buffer solutions was investigated. Results indicated that the poly(2‐hydroxyethyl methacrylate) (PHEMA) hydrogels exhibited an overshooting phenomenon in their dynamic swelling behavior. The maximum overshooting value decreased with increasing of the temperature. The same results were also found in the HEMA/SA50 copolymeric gels with a lower SA50 content. On the contrary, the overshooting phenomenon for HEMA/SA50 copolymeric gels with a higher content of SA50 was exhibited only under higher temperature (over 35°C). These copolymer gels were used to assess drug release and drug delivery in this article. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 1360–1371, 2001  相似文献   

19.
BACKGROUND: Poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) [P(3HB‐co‐3HV)] co‐polymer has immense potential in the field of environmental and biomedical sciences as biodegradable and biocompatible material. The present study examines a filamentous N2‐fixing cyanobacterium, Nostoc muscorum Agardh as a potent feedstock for P(3HB‐co‐3HV) co‐polymer production and characterization of co‐polymer film for commercial applications. RESULTS: Under photoautotrophic growth conditions, N. muscorum Agardh accumulated the homopolymer of poly‐β‐hydroxybutyrate (PHB), whereas synthesis of P(3HB‐co‐3HV) co‐polymer was detected under propionate‐ and valerate‐supplemented conditions. Exogenous carbons such as acetate, fructose and glucose supplementation with propionate/valerate was found highly stimulatory for the co‐polymer accumulation; the content reached 58–60% of dry cell weight (dcw) under P‐/N‐deficiencies with 0.4% acetate + 0.4% valerate supplementation, the highest value reported so far for P(3HB‐co‐3HV) co‐polymer‐producing cyanobacterial species. The material properties of the films were studied by mechanical tests, surface analysis and differential scanning calorimetry (DSC). CONCLUSION: N. muscorum Agardh, a photoautotrophic N2‐fixing cyanobacterium, emerged as a potent host for production of P(3HB‐co‐3HV) co‐polymer with polymer content 60% of dry cell weight. The material properties of the films were found to be comparable with that of the commercial polymer, thus advocating its potential applications in various fields. Copyright © 2012 Society of Chemical Industry  相似文献   

20.
This study continues long‐standing efforts to develop protein delivery systems based on cyclodextrin‐conjugated polyester in our laboratory. The crude products of ethylenediamino bridged bis(β‐cyclodextrin)‐conjugated poly(DL ‐lactic‐co‐glycolic acid) were used in this study to make full use of unreacted reactant. With bovine serum albumin (BSA) as a model protein, the encapsulation effects (the encapsulation efficiency and particle size) of nanoparticles were similar to those of using pure conjugated products. Besides, a water‐in‐oil‐in‐water emulsification technique was conveniently modified. By adding polyvinyl alcohol (PVA) in the internal aqueous phase, a more stabilized emulsion was formed. Consequently, less PVA (~ 0.05%) was needed in the outer aqueous phase and less PVA (0.14 g/g nanoparticles) remained in the nanoparticles. This modification resulted in improved encapsulation efficiency (~ 89–94%) of BSA and an enlarged particle size (340–390 nm). Furthermore, the burst release of BSA at the 1st day was less pronounced (7–12% of the encapsulated amount) than that of nanoparticles with no PVA added in the internal aqueous phase. Degradation studies using transmission electron microscope and gel permeation chromatography suggested that the mechanism for protein release was mainly through nanoparticles erosion. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号