首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The specific gravity of biodiesel and its blends with diesel fuel   总被引:6,自引:0,他引:6  
The specific gravities of biodiesel and 75, 50, and 20% blends with No. 1 and No. 2 diesel fuels were measured as a function of temperature from the onset of crystallization to 100°C. The results indicate that biodiesel and its blends demonstrate temperature-dependent behavior that is qualitively similar to the diesel fuels. The temperature dependence of the specific gravity for biodiesel and its blends was compared with the ASTM D 1250-80 procedure for the temperature correction of hydrocarbon fuels, and the procedure was found to provide accurate corrections. A blending equation was developed that allows the specific gravity of blends to be calculated from the specific gravities of the biodiesel and diesel fuels.  相似文献   

2.
The kinematic viscosities of four biodiesel fuels—two natural soybean oil methyl esters, one genetically modified soybean oil methyl ester, and one yellow grease methyl ester—and their 75, 50, and 25% blends with No. 2 diesel fuel were measured in the temperature range from 20 to 100°C in steps of 20°C. The measurements indicated that all these fuels had viscosity-temperature relationships similar to No. 2 diesel fuel, which followed the Vogel equation as expected. A weighted semilog blending equation was developed in which the mass-based kinematic viscosity of the individual components was used to compute the mixture viscosity. A weight factor of 1.08 was applied to biodiesel fuel to account for its effect on the mixture viscosity. The average absolute deviation achieved with this method was 2.1%, which was better than the uncorrected mass average blending equation that had an average absolute deviation of 4.5%. The relationship between the viscosity and the specific gravity of biodiesel fuels was studied. A method that could estimate the viscosity from the specific gravity of biodiesel fuel was developed. The average absolute deviation for all the samples using this method was 2.7%. The accuracy of this method was comparable to the weighted mass-based semilog blending equation.  相似文献   

3.
The kinematic viscosity of biodiesel and its blends with diesel fuel   总被引:1,自引:0,他引:1  
As the use of biodiesel becomes more wide-spread, engine manufacturers have expressed concern about biodiesel’s higher viscosity. In particular, they are concerned that biodiesel may exhibit different viscosity-temperature characteristics that could result in higher fuel injection pressures at low engine operating temperatures. This study presents data for the kinematic viscosity of biodiesel and its blends with No. 1 and No. 2 diesel fuels at 75, 50, and 20% biodiesel, from close to their melting point to 100°C. The results indicate that while their viscosity is higher, biodiesel and its blends demonstrate temperature-dependent behavior similar to that of No. 1 and No. 2 diesel fuels. Equations of the same general form are shown to correlate viscosity data for both biodiesel and diesel fuel, and for their blends. A blending equation is presented that allows the kinematic viscosity to be calculated as a function of the biodiesel fraction.  相似文献   

4.
Aviation fuel JP-5 and biodiesel on a diesel engine   总被引:1,自引:0,他引:1  
Naval aviation turbine fuel, JP-5, has been accepted as alternative to JP-8 in the frame of the Single Fuel Policy. This has resulted in some ongoing research on JP-5 fuel for its application as a naval single fuel. The necessity to cope with the environmental problems identified in the process of implementing the Single Fuel Policy as well as the strict requirements of modern diesel engines has lead to the need of improved single fuel quality. The development of biomass derived substitutes for diesel, such as biodiesel, is a possible attractive solution. The present paper is an effort to evaluate JP-5 along with diesel and biodiesel for use in a diesel engine. These fuels were used alone and in various mixture fractions in a single cylinder stationary diesel engine in order to evaluate their performance under defined operating conditions of the engine. JP-5 reduced both the NOx and particulate matter emissions as compared to the reference fuel case. Biodiesel significantly lowered particulate emissions, but slightly increased NOx emissions and fuel consumption. Fuel sulfur content has an undesired effect on smoke opacity. Biodiesel increased the fuel consumption when added to petroleum fuels and the increase was larger at high engine loads. Diesel and JP-5 showed similar fuel consumption, with diesel consumption increasing at high engine loads. Ternary blends showed similar behavior. The blends with lower biodiesel content showed lower volumetric fuel consumption.  相似文献   

5.
The density and speed of sound of blends of biodiesel with No. 2 and No. 1 diesel fuels were measured from atmospheric pressure to 32.46 MPa at temperatures of 20 and 40°C. The isentropic bulk modulus was calculated from these quantities. The results show that the density and isentropic bulk modulus can be accurately modeled as having a linear variation with blend percentage. Speed of sound is better correlated by a second-order equation. Correlation equations are given and a blending rule is developed that allows the density, speed of sound, and isentropic bulk modulus of blends to be calculated from the properties of the biodiesel and diesel fuel.  相似文献   

6.
An experimental investigation is conducted to evaluate the effects of using blends of n-butanol (normal butanol) with conventional diesel fuel, with 8% and 16% (by vol.) n-butanol, on the performance and exhaust emissions of a fully instrumented, six-cylinder, water-cooled, turbocharged and after-cooled, heavy duty, direct injection (DI), Mercedes-Benz engine, installed at the authors’ laboratory, which is used to power the mini-bus diesel engines of the Athens Urban Transport Organization sub-fleet. The tests are conducted using each of the above fuel blends, with the engine working at two speeds and three loads. Fuel consumption, exhaust smokiness and exhaust regulated gas emissions such as nitrogen oxides, carbon monoxide and total unburned hydrocarbons are measured. The differences in the measured performance and exhaust emissions of the two butanol/diesel fuel blends from the baseline operation of the engine, i.e. when working with neat diesel fuel, are determined and compared. It is revealed that this fuel, which can be produced from biomass (bio-butanol), is a very promising bio-fuel for diesel engines. The differing physical and chemical properties of n-butanol against those for the diesel fuel, aided by sample cylinder pressure and heat release rate diagrams, are used to interpret the observed engine behavior.  相似文献   

7.
Graft copolymers of natural rubber and polystyrene were synthesized by free‐radical grafting of styrene monomer onto natural rubber in latex form. The obtained graft copolymers and unsaturated polyester (UPE) resin were mixed and cast at room temperature using methyl ethyl ketone peroxide as an initiator and Co‐octoate as an accelerator. The samples prepared from ungrafted natural rubbers exhibited the aggregation of the rubber component, whereas the samples prepared from grafted natural rubbers showed good dispersion of the rubber component in a glassy matrix of UPE resin. It was found that the amount of polystyrene grafted onto natural rubber and the graft copolymer content in polymer blend significantly affect the mechanical properties of the blend samples. An increase in the amount of hard and brittle polystyrene in glassy matrix of UPE resin overshadowed the impact‐absorbing ability of the rubber component, causing the impact strength of the blend samples to be lower than that of pure UPE resin. On the other hand, an increase in easily elongated uncrosslinked rubber molecules, as the graft copolymer content in blend samples increased, resulted in a decrease in their flexural strength. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 1496–1503, 2004  相似文献   

8.
O?uzhan Do?an 《Fuel》2011,90(7):2467-9430
Nitrogen oxides and smoke emissions are the most significant emissions for the diesel engines. Especially, fuels containing high-level oxygen content can have potential to reduce smoke emissions significantly. The aim of the present study is to evaluate the influence of n-butanol/diesel fuel blends (as an oxygenation additive for the diesel fuel) on engine performance and exhaust emissions in a small diesel engine. For this aim five-test fuels, B5 (contains 5% n-butanol and 95% diesel fuel in volume basis), B10, B15, B20 and neat diesel fuel, were prepared to test in a diesel engine. Tests were performed in a single cylinder, four stroke, unmodified, and naturally aspirated DI high speed diesel engine at constant engine speed (2600 rpm) and four different engine loads by using five-test fuels. The experimental test results showed that smoke opacity, nitrogen oxides, and carbon monoxide emissions reduced while hydrocarbon emissions increased with the increasing n-butanol content in the fuel blends. In addition, there is an increase in the brake specific fuel consumption and in the brake thermal efficiency with increasing n-butanol content in fuel blends. Also, exhaust gas temperature decreased with increasing n-butanol content in the fuel blends.  相似文献   

9.
谢怀忠 《广东化工》2005,32(2):18-20
本文对EMCEE的1140型水分离指数仪分析和校准的准确度进行了考察,讨论了光电测量池.搅拌速率、推动时间、搅拌轴垂直、不同厂家生产的聚结器和容器瓶壁吸附、参比溶液芳烃含量等因素对分析及校准结果的影响。并经过试验提高了分析及校准的准确度。  相似文献   

10.
Biodiesel, defined as the alkyl esters (usually methyl esters) of vegetable oils, is miscible with conventional diesel fuel at all blend levels. Until the present time, no rapid and reliable analytical method has existed for determining the blend level of biodiesel in conventional diesel fuel. In the present work, near-infrared (NIR) and nuclear magnetic resonance (NMR) spectroscopies were used to determine the blend level of biodiesel in conventional diesel fuel. Several regions in the NIR region (around 6005 cm−1 and 4800–4600 cm−1) are suitable for this purpose. The method is rapid and easy to use, and does not require any hardware changes when using the same instrument for monitoring the biodiesel-producing transesterification reaction and determining biodiesel fuel quality. In 1H NMR spectroscopy, the integration values of the peaks of the methyl ester moiety and the aliphatic hydrocarbon protons in biodiesel and conventional diesel fuel were used for determining blend levels. The results of NIR and NMR blend level determinations are in good agreement.  相似文献   

11.
Vegetable oils (triacylglycerols) have many characteristics that make them attractive candidates as renewable alternative fuels for compression-ignition (diesel) engines. Unfortunately, vegetable oils are too viscous to be compatible with modern direct-injection diesel fuel systems and engines. Co-solvent blending is a simple and flexible technology that reduces viscosity by mixing the oil with low molecular weight alcohol. A co-solvent (A), consisting, of surfactant plus an amphiphilic compound, is added to solubilize otherwise nearly immiscible oil-alcohol mixtures into a single-layer (isotropic) solution. This work examines low-temperature phase behavior of two soybean oil (SBO)/methanol mixtures solubilized by A=unsaturated long-chain (C18) fatty alcohol/medium-chain alkanol (n-butanol and 2-octanol), one SBO/methanol mixture solubilized by A=triethylammonium linoleate/2-octanol, and one SBO/95 wt% ethanol (E95) mixture solubilized by n-butanol. The E95-blend was further blended in 1∶1 (vol/vol) mixtures with No. 2 diesel fuel. Two types of anisotropic phase behavior were observed; formation of a cloudy layer of solid crystals suspended in bulk solution (Type 1) and formation of two immiscible liquid layers (Type II). The type of phase separation in a given solution was influenced by phase separation temperature (T ϕ) relative to the crystallization characteristics of compounds in the SBO and fatty alcohol or amine constituents present in solution. Solutions with relatively low T ϕ values experienced crystallization of small solid particles favoring Type 1 separations. Conversely, solutions with T ϕ sufficient to avert crystallization of high melting point compounds favored Type II separations where T ϕ=critical solution temperature (T critical). Increasing the A/oil (SBO or No. 2 diesel/SBO mixture) mass ratio decreased T ϕ while increasing the mass fraction of alcohol (methanol or E95) increased T ϕ. This work shows that vegetable oil/A-based blends can be formulated with cold flow properties superior with respect to cloud point and comparable with respect to kinematic viscosity (v) of methyl soyate (biodiesel), either neat or blended with petroleum middle distillates. Retired  相似文献   

12.
Methyl tallowate was prepared from edible beef tallow via transesterification, and was blended with ethanol and/or No.2 diesel fuel in different ratios. Crystallization characteristics of methyl tallowate and its blends were studied at temperatures ranging from 22 to −16°C. Blending ethanol with methyl tallowate reduced crystal formation at all temperatures. As the temperature of the blends was reduced from 22 to 0°C, there was no effect on crystal formation of saturated vs. unsaturated fatty acids. Below 0°C, the saturated fatty acids crystallized at a much faster rate than the unsaturated fatty acids.  相似文献   

13.
采用低相对分子质量的液体环氧树脂(EP)与固化剂混合作为增强体的前驱体,比较了其填充天然橡胶(NR)、顺丁橡胶(BR)及两者并用胶的物理机械性能,考察了EP用量对并用胶及炭黑增强并用胶物理机械性能的影响,并通过扫描电子显微镜表征了填充后的NR、BR及并用胶的微观相态结构。结果表明,EP的加入均可提高NR、BR、NR/BR并用胶的物理机械性能,其中并用胶的拉伸强度提高幅度最大;当EP用量约为24份时,NR/BR并用胶的综合性能最佳;EP可以提高炭黑增强NR/BR并用胶的物理机械性能,但提高幅度不大;EP在NR/BR并用胶中呈现规整的圆球形状,直径为1.0~2.5μm。  相似文献   

14.
Thermosetting conductive adhesive (TCA) comprised of epoxy resin E‐51 as matrix, Cu microparticles and nanoparticles modified by silane coupling KH550 as conductive fillers, polyamide resin with low molecular weight as curing agent, and some other additives. It was reported creatively a new liquid curing agent, which solved successfully some difficult problems during preparation of TCA, such as limit of quantity of conductive fillers. Therefore, application of this liquid curing agent decreased greatly the resistivity of TCA under the condition of keeping enough adhesion strength. Antioxidized and mixed Cu particles were developed as conductive fillers in place of expensive Ag. The results showed that optimum conditions of conductive adhesive composed of 16 wt % of epoxy resin E‐51, 8 wt % polyamide resin, 65 wt % of Cu microparticles and nanoparticles, 1.3 wt % of silane coupling agent, and 9 wt % of other additives with curing time for 4 h at 60°C. The adhesion strength reached 16.7 MPa and the bulk resistivity was lower than 3.7 × 10?4 Ω cm. The variation of bulk resistivity was less than 15% at high temperature (100°C). © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

15.
Biodiesel is an alternative fuel for diesel engines that consists of the monoalkyl esters of vegetable oils or animal fats. Currently, most biodiesel consists of methyl esters, which have poor cold-flow properties. Methyl esters of soybean oil will crystallize and plug fuel filters and lines at about 0°C. However, isopropyl esters have better cold-flow properties than methyl esters. This paper describes the production of isopropyl esters and their evaluation in a diesel engine. The effects of the alcohol amount, the catalyst amount, and two different catalysts on producing quality biodiesel were studied. Both sodium isopropoxide and potassium isopropoxide were found to be suitable for use in the transesterification process. A 20∶1 alcohol/TG molar ratio and a catalyst amount equal to 1% by weight (based on the TG amount) of sodium metal was the most cost-effective way to produce biodiesel fuel. The emissions from a diesel engine running on isopropyl esters made from soybean oil and yellow grease were investigated by comparing them with No. 2 diesel fuel and methyl esters. For nitrogen oxide emission, the difference between the biodiesel produced from soybean oil and yellow grease was greater than the difference between the methyl and isopropyl esters of both feedstocks. The other emissions from using isopropyl esters were about 50% lower in hydrocarbons, 10–20% lower in carbon monoxide, and 40% lower in smoke number when compared with No. 2 diesel fuel.  相似文献   

16.
Yahia A. Alhamed 《Fuel》2009,88(1):87-14104
Samples of granular activated carbon (GAC) were produced from dates’ stones by chemical activation using ZnCl2 as an activator. Textural characteristics of GAC were determined by nitrogen adsorption at 77 K along with application of BET equation (Brunauer, Emmett and Teller) for determination of surface area. Pore size distribution and pore volumes were computed from N2 adsorption data by applying the nonlinear density function theory (NLDFT). FT-IR spectra of GAC samples were also obtained to determine the functional groups present on the surface. GAC samples were used in desulfurization of a model diesel fuel composed of n-C10H34 and dibenzothiophene (DBT) as sulfur containing compound. More than 86% of DBT is adsorbed in the first 3 h which gradually increases to 92.6% in 48 h and no more sulfur is removed thereafter. The adsorption data were fitted to both Freundlich and Langmuir equations to estimate the adsorption parameters. The optimum operating conditions for GAC preparation based on high adsorption capacity are Tcarb = 700 °C, θcarb = 3.0 h and R = 0.5. Moreover, the efficiency of sulfur removal by GAC is reduced when applied to commercial diesel fuel. Finally, linear regression of experimental data was able to predict the critical pore diameter for DBT adsorption (0.8 nm) and validating the reported impact of average pore diameter of activated carbon on the adsorption capacity.  相似文献   

17.
Jo-Han Ng  Suyin Gan 《Fuel》2011,90(8):2700-2709
In this two-phase experimental programme, key effects of different biodiesel fuels and their blends on engine-out responses of a light-duty diesel engine were investigated. Here, coconut methyl ester (CME), palm methyl ester (PME) and soybean methyl ester (SME) were tested to represent the wide spectrum of degree of saturations in the fatty acid composition. Fossil diesel which served as the blending component was used as the baseline fuel for benchmarking purposes. Phase I examined how engine speed and load affect patterns of variation in tailpipe emissions and engine performance parameters for the test fuels. Here, the trends in engine-out responses across the operational speed-load map for all the tested biodiesel fuels were similar and consistent throughout. However, there were marked differences in the levels of equivalence ratio and specific fuel consumption, as well as exhaust concentrations of CO, UHC and smoke opacity. This is mainly due to differences in fuel properties, especially fuel-bound oxygen content, density and impurity level. Phase II appraised the performance of 31 different fuel blend combinations of fossil diesel blended with CME, PME or SME at 10 vol.% interval under a steady-state test cycle. The use of biodiesel fuels with low to moderate degree of unsaturation was found to conclusively reduce regulated emission species of UHC, NO and smoke opacity levels by up to 41.7%, 5.4% and 61.3%, respectively. This is in contrast to the performance of the highly unsaturated SME, where CO, UHC, NO and smoke opacity levels are higher in relation to that of fossil diesel. Simultaneous NO-smoke reduction can be achieved through the introduction of at least 1 vol.% of PME or 50 vol.% of CME into diesel fuel, although minor trade-off in the higher specific fuel consumption is observed.  相似文献   

18.
引 言近年来, 各个国家对燃油中芳烃含量的限制力度逐渐加强, 柴油降芳烃日益受到人们的关注. 世界燃油规范二类柴油要求二环、三环及多环芳烃<5%, 三类柴油要求二环、三环及多环芳烃<2%.目前柴油脱硫降芳烃的主要手段是催化加氢, 该方法的反应条件要求高, 而且需要外供氢气,  相似文献   

19.
ABSTRACT

In this paper, novel flower-like hollow MoS2 microspheres (FHMs) were synthesized by a hydrothermal method using MF microspheres as template. The FHMs were hydrophobically modified and utilized as porous fillers to fabricate FHMs/acrylic resin composites through suspension polymerization. The oil-absorption tests revealed that the composite with 4 wt% FHMs had a high oil-absorption capacity, which might be due to the synergistic absorption effect of organic and inorganic components. Their high absorption capacity, rapid absorption rate, and excellent reusability make them attractive options as absorbents for practical oil/water separation.  相似文献   

20.
The effects of using blends of methyl and isopropyl esters of soybean oil with No. 2 diesel fuel were studied at several steady-state operating conditions in a four-cylinder turbocharged diesel engine. Fuel blends that contained 20, 50, and 70% methyl soyate and 20 and 50% isopropyl soyate were tested. Fuel properties, such as cetane number, also were investigated. Both methyl and isopropyl esters provided significant reductions in particulate emissions compared with No. 2 diesel fuel. A blend of 50% methyl ester and 50% No. 2 diesel fuel provided a reduction of 37% in the carbon portion of the particulates and 25% in the total particulates. The 50% blend of isopropyl ester and 50% No. 2 diesel fuel gave a 55% reduction in carbon and a 28% reduction in total particulate emissions. Emissions of carbon monoxide and unburned hydrocarbons also were reduced significantly. Oxides of nitrogen increased by 12%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号