首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Poly(2,5-dimercapto-1,3,4-thiadiazole) (PDMcT)/sulfonated graphene conductive composite (PDMcT/SGS) was synthesized through in situ oxidative polymerization in the presence of the water-soluble sulfonated graphene sheets (SGS). Raman spectra revealed the existence of the π–π interaction between thiadiazole rings and basal planes of SGS. Scanning electron microscopy and transmission electron microscopy showed that the submicron-sized petals and nanofibers of PDMcT grew onto the surface of SGS. As evidenced by the cyclic voltammetry results, the incorporation of SGS has significantly improved the electrochemical activity and cyclability of PDMcT. The discharge capacity of PDMcT/SGS composite, measured with the charge–discharge tests, was 268 mAh g−1 at the first cycle and 124 mAh g−1 after 10 cycles.  相似文献   

2.
Lithium iron phosphate mixed with nano-sized acetylene black (LiFePO4-AB) was synthesized by a hydrothermal method and subsequent high-energy ball-milling process. Different contents of AB were added to improve the electronic conductivity of LiFePO4. The structural and morphological performance of LiFePO4-AB was investigated by X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscope, and high-resolution transmission electron microscope. LiFePO4-AB/Li batteries were fabricated in an argon-filled glove box, and their electrochemical performance was analyzed by cyclic voltammetry and charge/discharge tests. The XRD results demonstrate that LiFePO4-AB has an olivine-type structure indexed to the orthorhombic Pnma space group. LiFePO4-AB/Li battery with 10 wt% AB shows the best high-rate discharge properties with the discharge capacities of 116 mAh g−1 at 1 C and 85 mAh g−1 at 10 C at room temperature.  相似文献   

3.
Nanoplatelets of metal oxides with interesting porous structure were obtained by thermal treatment of Ni/Al hydrotalcite. Structural and surface properties of the porous oxides were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM and HRTEM), and N2 adsorption–desorption. The electrochemical performance of the electrodes was investigated by cyclic voltammetry, electrochemical impedance spectroscopy and constant current charge–discharge measurements. Ni/Al hydrotalcite calcined at 450 °C (NA-450) displayed a maximum specific capacitance (419.0 F g−1) due to the porous structure with the highest specific surface area (142.3 m2 g−1) and small pore size (4.4 nm). The present study shows the potential of NiO nanoplatelets composite material for electrochemical pseudo-capacitors.  相似文献   

4.
Three-dimensional porous Sn thin film electrodes were prepared by electroless deposition on copper foam, then its morphology and electrochemical property were studied by means of scanning electron microscope (SEM), X-ray diffraction (XRD), electrochemical cycling test and cyclic voltammetry (CV). The porous framework and micro-holes have shown a great structure advantage in restricting severe volume changes when the Sn thin film was employed as anode for lithium-ion battery. The film electrode of sample C with an initial capacity of 676 mAh g−1 showed good cycle performance displayed by retaining a capacity of 313 mAh g−1 after 100 cycles.  相似文献   

5.
A Si thin film of thickness 275 nm was deposited on rough Cu foil by magnetron sputtering for use as lithium ion battery anode material. X-ray diffraction (XRD) and TEM analysis revealed that the Si thin film was completely of amorphous structure. The electrochemical performance of the Si thin film was investigated by cyclic voltammetry and constant current charge/discharge test. The film exhibited a high capacity of 3,134 mAh g−1 at 0.025 C rate. The capacity retention was 61.3% at 0.5 C rate for 500 cycles. An island structure formed on the Cu foil substrate after cycling adhered to the substrate firmly and provided electrical connection. This is the possible reason for the long cycling life of Si thin film anode. Moreover, the cycling performance was further improved by annealing at 300 °C. The Li+ diffusion coefficients (D 0) of Si thin film, measured by cyclic voltammetry, are 1.47 × 10−9 cm2 s−1 and 2.16 × 10−9 cm2 s−1 for different reduced peaks.  相似文献   

6.
Nanostructured Co3O4 was prepared via a simple two-step process: cathodic electrodeposition of cobalt hydroxide from additive free nitrate bath and then heat treatment at 400 °C for 3 h. The prepared oxide product was characterized by powder X-ray diffraction, infrared spectroscopy, surface area measurement, scanning electron microscopy, and transmission electron microscopy. Morphological characterization showed that the oxide product was composed of porous nanoplates, and BET measurement displayed that the oxide plates have the average pore diameter and the surface area of 4.75 nm and 208.5 m2 g−1, respectively. The supercapacitive performance of the nanoplates was evaluated using cyclic voltammetry and charge–discharge tests. A specific capacitance as high as 393.6 F g−1 at the constant current density of 1 A g−1 and an excellent capacity retention (96.5% after 500 charge–discharge cycles) was obtained. These results indicate that Co3O4 nanoplates can be recognized as high-performance electrode materials.  相似文献   

7.
A porous nanowall Co3O4 film is prepared by a facile cathodic electrodeposition. The as-prepared porous nanowall Co3O4 film shows a net-like porous structure with huge porosity. The porous network is made up of free standing interconnected Co3O4 nanoflakes with a thickness of 20 nm. As cathode material for pseudocapacitors, porous nanowall Co3O4 film exhibits weaker polarization, higher electrochemical reactivity and better cycling performance as compared to the dense Co3O4 film. The specific capacitance of porous nanowall Co3O4 film is 325 F g−1 at 2 A g−1 and 247 F g−1 at 40 A g−1, respectively, much higher than that of the dense Co3O4 film (230 F g−1 at 2 A g−1 and 167 F g−1 at 40 A g−1). The better pseudocapacitive performances of the porous nanowall Co3O4 film are attributed to its highly porous morphology, which provides large reaction surface and short ion diffusion paths, and relaxes the volume change caused by the reaction during the cycling process.  相似文献   

8.
The Polyvinylpyrrolidone (PVP)-assisted polyol process was employed for the synthesis of lithium manganese phosphate (LiMnPO4) microflowers as a cathode material for Li-ion battery applications. LiMnPO4 microflowers were characterized by X-ray diffraction, scanning electron microscope, transmission electron microscope-energy dispersion spectroscope, and impedance spectroscopy. The microflowers were highly porous with nanosized petals. CR2032 coin cells were fabricated using LiMnPO4 microflowers’ sample and their battery characteristics were tested. The discharge capacity of LiMnPO4 microflowers was found to be 164 mAh g−1 at 0.1C. The observed high discharge capacity was attributed to the short diffusion length of Li-ion motion in the nanopetals of the LiMnPO4 microflowers.  相似文献   

9.
Tin-manganese oxide film with three-dimensional (3D) reticular structure has been prepared by electrostatic spray deposition (ESD). X-ray diffraction (XRD) and transmission electron microscopy (TEM) indicate that the film is amorphous. X-ray-photoemission spectroscopy (XPS) demonstrates that the 3D grid is composed of tin-manganese oxide. As an anode electrode for the lithium ion battery, the tin-manganese oxide film has 1188.3 mAh g−1 of initial discharge capacity and very good capacity retention of 656.2 mAh g−1 up to the 30th cycle. Such a composite film can be used as an anode for lithium ion batteries with higher energy densities.  相似文献   

10.
A method for coating a thick layer of carbonaceous mesophase was developed to treat spherical natural graphite (SNG) for use as anodes in lithium ion batteries. The carbonaceous mesophase layer was fabricated by heat treatment of a mixture of SNG and coal tar pitch. The thickness of the carbonaceous mesophase on the surface of the SNG was approximately 2.5 μm, which is effective for enhancing the strength of the carbonaceous mesophase shell and for allowing the shell to maintain good integrity at a high anode density (1.6 g cm−3). The mesophase layer increased the initial columbic efficiency from approximately 90% to 95%, dramatically improved the capacity retention and reduced the irreversible capacity by greatly decreasing the SNG surface area. The initial efficiency, cycle life and rate capability for the SNG anode covered by a thick mesophase layer gave comparable results as the mesocarbon microbeads (MCMB) anode, while the SNG anode reversible capacity of 341 mAh g−1 was higher than that of MCMB, 319 mAh g−1. Electrochemical measurements showed that SNG particles coated by a thick carbonaceous mesophase layer are strong candidates for use as possible anode materials in high energy density lithium ion batteries.  相似文献   

11.
Iron disulfide (FeS2) powders were successfully synthesized by hydrothermal method. Cetyltrimethylammonium bromide (CTAB) had a great influence on the morphology, particle size, and electrochemical performance of the FeS2 powders. The as-synthesized FeS2 particles with CTAB had diameters of 2–4 μm and showed a sphere-like structure with sawtooth, while the counterpart prepared without CTAB exhibited irregular morphology with diameters in the range of 0.1–0.4 μm. As anode materials for Li-ion batteries, their electrochemical performances were investigated by galvanostatic charge–discharge test and electrochemical impedance spectrum. The FeS2 powder synthesized with CTAB can sustain 459 and 413 mAh g−1 at 89 and 445 mA g−1 after 35 cycles, respectively, much higher than those prepared without CTAB (411 and 316 mAh g−1). The enhanced rate capability and cycling stability were attributed to the less-hindered surface layer and better electrical contact from the sawtooth-like surface and micro-sized sphere morphology, which led to enhanced process kinetics.  相似文献   

12.
Recently, there have been many reports on efforts to improve the rate capability and discharge capacity of lithium secondary batteries in order to facilitate their use for hybrid electric vehicles and electric power tools. In the present work, we present a ZrO2-coated Li[Li1/6Mn1/2Co1/6Ni1/6]O2. The bare Li[Li1/6Mn1/2Co1/6Ni1/6]O2 shows a high initial discharge capacity of 224 mAh g−1 at a 0.2 C rate. Owing to the stability of ZrO2, it was possible to enhance the rate capability and cyclability. After 1 wt% ZrO2 coating, the ZrO2-coated Li[Li1/6Mn1/2Co1/6Ni1/6]O2 showed a high discharge capacity of 115 mAh g−1 after 50 cycles under a 6 C rate, whereas the bare Li[Li1/6Mn1/2Co1/6Ni1/6]O2 showed a discharge capacity of only 40 mAh g−1 and very poor cyclability under the same conditions. Based on results of XRD and EIS measurements, it was found that the ZrO2 suppressed impedance growth at the interface between the electrodes and electrolyte and prevented collapse of the layered hexagonal structure.  相似文献   

13.
LiFe0.4Mn0.6−x Ni x PO4/C(x = 0, 0.05, 0.1, and 0.2) composite cathode materials for lithium ion batteries have been prepared by the co-precipitation method using oxalic acid as a precipitator. The structure and morphology of precursors and products have been investigated. Electrochemical tests demonstrate that LiFe0.4Mn0.55Ni0.05PO4 can deliver a specific capacity of 142 mAh g−1 at 0.1 C, and retains 133 mAh g−1 after 60 cycles. The rate performance of LiFe0.4Mn0.6PO4 is obviously improved by doping Ni. The capacity of LiFe0.4Mn0.55Ni0.05PO4 at 2 C is 110 mAh g−1.  相似文献   

14.
Iron oxide film with spaced radial nanorods is formed on the VGCF (vapor-grown carbon nanofiber) scaffolds by means of anodic electrodeposition. X-ray diffraction, scanning electron microscopy, and transmission electron microscopy show that the iron oxide film deposited on the VGCF surface is α-Fe2O3 and consists of spaced radial nanorods having 16-21 nm in diameter after annealing at 400 °C. Galvanostatic charge/discharge results indicate that the α-Fe2O3/VGCF anode (970 mAh g−1) has higher capacity than bare α-Fe2O3 anode (680 mAh g−1) at 10 C current discharge. VGCF scaffolds fabricated by electrophoretic deposition favor the electron conduction, and the spaced radial nanorods on VGCFs facilitate the migration of lithium ion from the electrolyte. Electrochemical reactions between α-Fe2O3 and lithium ion are therefore improved significantly by this tailored architecture.  相似文献   

15.
A new kind of polymeric ionic liquid (PIL) membrane based on guanidinium ionic liquid (IL) with ester and alkyl groups was synthesized. On addition of guanidinium IL, lithium salt, and nano silica in the PIL, a gel PIL electrolyte was prepared. The chemical structure of the PIL and the properties of gel electrolytes were characterized. The ionic conductivity of the gel electrolyte was 5.07 × 10−6 and 1.92 × 10−4 S cm−1 at 30 and 80 °C, respectively. The gel electrolyte had a low glass transition temperature (T g ) under −60 °C and a high decomposition temperature of 310 °C. When the gel polymer electrolyte was used in the Li/LiFePO4 cell, the cell delivered 142 mAh g−1 after 40 cycles at the current rates of 0.1 C and 80 °C.  相似文献   

16.
Hollow spherical NiO particles were prepared using the spray pyrolysis method with different concentrations of precursor. The electrochemical properties of the NiO electrodes, which contained a new type of binder, carboxymethyl cellulose (CMC), were examined for comparison with NiO electrodes with polyvinylidene fluoride (PVDF) binder. The electrochemical performance of NiO electrodes using CMC binder was significantly improved. For the cell made from 0.3 mol L−1 precursor, the irreversible capacity loss between the first discharge and charge is about 43 and 24% for the electrode with PVDF and CMC binder, respectively. The cell with NiO–CMC electrode has a much higher discharge capacity of 547 mAh g−1 compared to that of the cell with NiO–PVDF electrode, which is 157 mAh g−1 beyond 40 cycles.  相似文献   

17.
Cobalt-doped tungsten disulfide nanorods were synthesized by an approach involving exfoliation, intercalation, and the hydrothermal process, using commercial WS2 powder as the precursor and n-butyllithium as the exfoliating reagent. XRD results indicate that the crystal phase of the sample is 2H-WS2. TEM images show that the sample consists of bamboo-like nanorods with a diameter of around 20 nm and a length of about 200 nm. The Co-doped WS2 nanorods exhibit the reversible capacity of 568 mAh g−1 in a voltage range of 0.01–3.0 V versus Li/Li+. As an electrode material for the lithium battery, the Co-doped WS2 nanorods show enhanced charge capacity and cycling stability compared with the raw WS2 powder.  相似文献   

18.
We report a facile and effective approach for the fabrication of hierarchically porous-structured NiO film. In this approach, the NiO film was deposited by chemical bath deposition through a self-assembled monolayer of polystyrene spheres template. The obtained NiO film exhibits a special hierarchical structure consists of two parts: the lower part is nickel oxide monolayer hollow-sphere array and the upper part is randomly porous net-like nickel oxide. The as-prepared NiO also shows a high specific surface area of 537 m2 g−1 and a narrow pore distribution centered at 140 nm. This is a technique for preparing large area hierarchical porous oxide or hydroxide films, which have a great promise for applications in optical devices, electrochemical sensors and thin-film batteries.  相似文献   

19.
In this work, a novel nano-sulfur/MWCNTs composite with modified multi-wall carbon nano-tubes (MWCNTs) as sulfur-fixed matrix for Li/S battery is reported. Based on different solubility of sulfur in different solvents, nano-sulfur/MWCNTs composite was prepared by solvents exchange method. The composite was characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The modified MWCNTs are considered that not only acts as a conducting material, but also a matrix for sulfur. The electrochemical performance of the nano-sulfur/MWCNTs composite was tested. The results indicated that nano-sulfur/MWCNTs composite had the specific capacity of 1380 mAh g−1, 1326 mAh g−1 and 1210 mAh g−1 in the initial cycle at 100 mA g−1, 200 mA g−1 and 300 mAh g−1 discharge rates respectively, and remained a reversible capacity of 1020 mAh g−1, 870 mAh g−1 and 810 mAh g−1 after 30 cycles. The electrochemical performances confirm that the modified MWCNTs as sulfur-fixed matrix show better ability than any other carbon in cathode of Li/S batteries that had been reported.  相似文献   

20.
1 M LiPF6 dissolved in oligo(ethylene glycol) dimethyl ether with a molecular weight, 500 g mol−1 (OEGDME500, 1 M LiPF6), was investigated as an electrolyte in experimental Al–Li/LiFePO4 cells. More than 60 cycles were achieved using this electrolyte in a Li-ion cell with an Al–Li alloy as an anode sandwiched between two Li x FePO4 electrodes (cathodes). Charging efficiencies of 96–100% and energy efficiencies of 86–89% were maintained during 60 cycles at low current densities. A theoretical investigation revealed that the specific energy can be increased up to 15% if conventional LiC6 anodes are replaced by Al–Li alloy electrodes. The specific energy and the energy density were calculated as a function of the active mass per electrode surface (charge density). The results reveal that for a charge density of 4 mAh cm−2 about 160 mWh g−1 can be reached with Al–Li/LiFePO4 batteries. Power limiting diffusion processes are discussed, and the power capability of Al–Li/LiFePO4 cells was experimentally evaluated using conventional electrolytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号