首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The acid-base properties of humic acids (HAs) are known to significantly affect the acid-base buffering capacity of soils, thus having a marked influence on the speciation of cations in the soil solid and liquid phases. Detailed information on the proton binding behavior of humic-like acids (HALs) from organic amendments and humic acids (HAs) from amended soils is, therefore, of intrinsic interest for the evaluation of the agronomic efficacy and environmental impact of soil amendment. In this work, the acid-base properties of HLAs isolated from sewage sludge (SS) and municipal solid waste compost (MSWC), and HAs isolated from soils amended with either SS or MSWC and the corresponding nonamended control soils were investigated by potentiometric titrations at various ionic strengths (0.01, 0.05, 0.1, and 0.3 M) over the pH range from 3.5 to 10.5. The nonideal competitive adsorption (NICA)-Donnan model that describes proton binding by two classes of binding sites with low and high proton affinity, i.e., carboxylic- and phenolic-type groups, was fit to titration data, and a set of fitting parameters was obtained for each HLA and HA sample. The NICA-Donnan model successfully described the shapes of the titration curves, and highlighted substantial differences in site density and proton-binding affinity between the HLAs and HAs examined. With respect to the nonamended control soil HAs, SS-HLA and MSWC-HLA were characterized by smaller carboxylic-type and phenolic-type group contents, larger affinities for proton binding by the carboxylic-type groups, and smaller affinities for proton binding by the phenolic-type groups. Amendment with SS and MSWC determined a number of modifications in soil HAs, including decrease of acidic functional group contents, slight increase of proton affinity of carboxylic-type groups, and slight decrease of the affinities for proton binding by phenolic-type groups. These effects were more evident in the HA fraction from the SS-amended soil than in the HA fraction from the MSWC-amended soil. Thus, both organic amendments examined can be a considered as a valuable source of organic matter for soil. However, MSWC appears to be an amendment of greater quality producing a smaller impact than SS on proton-binding behavior of soil HA.  相似文献   

2.
3.
4.
The complexation of Cd, Pb, and Cu by fulvic acids at a fixed pH and ionic strength is studied by means of different voltammetric techniques at any metal-to-ligand ratio. When using Reverse Pulse Polarography (RPP) the complex species are electrochemically labile and not subject to significant electrodic adsorption. RPP titrations of fulvic acid with metal ions are interpreted on the basis of a recently proposed analytical expression for limiting currents valid for fully labile heterogeneous complexation. The voltammetric data are transformed into the corresponding binding curve, i.e., the fraction of occupied sites vs free metal concentration. Finally, the competition between metal ions and protons in their interaction with the fulvic binding sites as well as the concomitant polyelectrolytic effects are analyzed in terms of the NICCA-Donnan model. The results show that voltammetric techniques can be applied to the studies of heterogeneous complex systems in a broad range of metal-to-ligand ratios.  相似文献   

5.
6.
Sewage sludge ash (SSA) is a suitable raw material for fertilizers due to its high phosphorus (P) content. However, heavy metals must be removed before agricultural application and P should be transferred into a bioavailable form. The utilization of gaseous hydrochloric acid for thermochemical heavy metal removal from SSA at approximately 1000 °C was investigated and compared to the utilization of alkaline earth metal chlorides. The heavy metal removal efficiency increased as expected with higher gas concentration, longer retention time and higher temperature. Equivalent heavy metal removal efficiency were achieved with these different Cl-donors under comparable conditions (150 g Cl/kg SSA, 1000 °C). In contrast, the bioavailability of the P-bearing compounds present in the SSA after thermal treatment with gaseous HCl was not as good as the bioavailability of the P-bearing compounds formed by the utilization of magnesium chloride. This disadvantage was overcome by mixing MgCO(3) as an Mg-donor to the SSA before thermochemical treatment with the gaseous Cl-donor. A test series under systematic variation of the operational parameters showed that copper removal is more depending on the retention time than the removal of zinc. Zn-removal was declined by a decreasing ratio of the partial pressures of ZnCl(2) and water.  相似文献   

7.
The compositions of humic acids (HAs) isolated from cultivated and forested "Terra Preta de Indio" or Amazonian Dark Earth soils (anthropogenic soils) were compared with those from adjacent non-anthropogenic soils (control soils) using elemental and thermogravimetric analyses, and a variety of solid-state nuclear magnetic resonance techniques. The thermogravimetric index, which indicates the molecular thermal resistance, was greater for the anthropogenic soils than for the control soils suggesting polycyclic aromatic components in the former. The cultivated anthropogenic soils were more enriched in C and depleted in H than the anthropogenic soils under forest, as the result of the selective degradation of aliphatic structures and the possible enrichment of H-deficient condensed aromatic structures. The combination of variable amplitude cross-polarization (VACP) and chemical shift anisotropy with total suppression of spinning sidebands experiments with composite pi pulses could be used to quantify the aromaticity of the HAs from the anthropogenic soils. From principal component analysis, using the VACP spectra, it was possible to separate the different constituents of the HAs, such as the carboxylated aromatic structures, from the anthropogenic soils and plant derived compounds. The data show that the HAs from anthropogenic soils have high contents of aryl and ionisable oxygenated functional groups, and the major functionalities from adjacent control soils are oxygenated functional groups from labile structures (carbohydrates, peptides, and with evidence for lignin structures). The anthropogenic soils HAs can be considered to be more recalcitrant, and with more stable reactive functional groups which may, in part, explain their more sustainable fertility due to the organic matter contribution to the soil cation exchange capacity.  相似文献   

8.
Binding of pyrene, fluoranthene, and phenanthrene to dissolved humic acids (HA) was determined by the fluorescence quenching (FQ) and complexation-flocculation (CF) methods. Determinations by the CF method, using varying contaminant concentrations and a constant HA concentration, yielded nonlinear Freundlich-type isotherms (n = 0.65-0.84). Experiments using both the CF and the FQ methods with varying HA concentrations and a constant contaminant concentration yielded curved "Stern-Volmer"-type plots that also indicate nonlinear binding. These findings suggest that linear partitioning or site complexation in the presence of excess available sites cannot fully describe the interactions of hydrophobic compounds with dissolved humic material. Site-specific hydrophobic interactions at limited interior or external molecular surfaces may be considered.  相似文献   

9.
10.
Models are available for simulations of proton dissociation and cation binding by natural organic matter; two examples are the NICA-Donnan and Stockholm Humic (SHM) models. To model proton and metal binding, it is necessary to properly account for the ionic strength dependence of proton dissociation. In previous applications of the models for soils itwas assumed that the electrostatic interactions for solid-phase humic substances were the same as in solution; this assumption was recently challenged. Therefore, we reanalyzed previously published acid-base titrations of acid-washed Sphagnum peat, and we produced additional data sets for two Sphagnum peats and two Spodosol Oe horizons. For the soil suspensions, the original NICA-Donnan and SHM models, which were developed for dissolved humic substances, underestimated the observed salt dependence considerably. When a fixed Donnan volume of 1 L kg(-1) for humic substances in the solid phase was used, the NICA-Donnan model fits were much improved. Also for SHM, slight changes produced improved model fits. The models also produced acceptable simulations of the dissolved Ca, Mg, and Cd concentrations, provided that cation selectivitywas introduced. In conclusion, the proposed extensions to the NICA-Donnan and SHM models were shown to predict the salt dependence of solid-phase humic substances more satisfactorily than earlier model versions.  相似文献   

11.
12.
The fate of arsenic in the aquatic environment is influenced by dissolved natural organic matter (DOM). Using an equilibrium dialysis method, conditional distribution coefficients (Dom) for As(III) and As(V) binding onto two commercial humic acids were determined at environmentally relevant As/dissolved organic carbon (DOC) ratios and as a function of pH. At all pH values, As(V) was more strongly bound than As(III). Maximum binding was observed around pH 7, which is consistent with H+ competition for binding sites at low pH values and OH- competition for the arsenic center at high pH. For both oxidation states, Dom values increased with decreasing As/DOC ratios. Dom values were fitted as a function of the As/DOC ratio for As(III) and As(V). Compared to the aquatic humic acid, the terrestrial humic acid had a higher affinity for arsenic binding with 1.5-3 times higher Dom values under the same conditions. Al3+ in excess to arsenic successfully competed for strong binding sites at low As/DOC ratios. Under environmentally relevant conditions, about 10% of total As(V) may be bound to DOM, whereas >10% of As(III) is bound to DOM at very low As/DOC ratios only. Binding of arsenic to DOM should be considered in natural systems.  相似文献   

13.
14.
Modeling metal binding to soils: the role of natural organic matter   总被引:4,自引:0,他引:4  
The use of mechanistically based models to simulate the solution concentrations of heavy metals in soils is complicated by the presence of different sorbents that may bind metals. In this study, the binding of Zn, Pb, Cu, and Cd by 14 different Swedish soil samples was investigated. For 10 of the soils, it was found that the Stockholm Humic Model (SHM) was able to describe the acid-base characteristics, when using the concentrations of "active" humic substances and Al as fitting parameters. Two additional soils could be modeled when ion exchange to clay was also considered, using a component additivity approach. For dissolved Zn, Cd, Ca, and Mg reasonable model fits were produced when the metal-humic complexation parameters were identical for the 12 soils modeled. However, poor fits were obtained for Pb and Cu in Aquept B horizons. In two of the soil suspensions, the Lund A and Romfartuna Bhs, the calculated speciation agreed well with results obtained by using cation-exchange membranes. The results suggest that organic matter is an important sorbent for metals in many surface horizons of soils in temperate and boreal climates, and the necessity of properly accounting for the competition from Al in simulations of dissolved metal concentrations is stressed.  相似文献   

15.
16.
17.
The transport of inorganic and organic pollutants in water and soil can be strongly influenced by the mobility of natural dissolved organic matter (DOM). In this paper, the transport of a humic acid (HA) and a fulvic acid (FA) in a copper-contaminated acid sandy soil was studied. The data showed that the transport behavior of HA differed from that of FA. The breakthrough curves (BTCs) of HA were characterized by a rapid relatively sharp front followed by a plateau at a lower HA concentration than in the influent solution. The increase of the Ca concentration decreased the HA concentration further. Compared to HA, the BTCs of FA were retarded and showed an extended tailing, approaching complete breakthrough. The increase of the Ca concentration decreased the FA concentration only temporarily. On the basis of our model calculation, the characterization of HA transport could be explained by the coagulation of HA largely upon the binding of Al. The increase of the Ca concentration resulted in further coagulation of HA because of the increased Ca adsorption, which occurred mainly in the Donnan phase. For FA, the adsorption to the soil matrix was more likely the process that controls its solubility and mobility. The mobility of Al and Cu in the soil column was closely related to the solubility and transport of the DOM in soil solution. The concentration of Ca in the effluent was lower than in the influent because Ca was retained in the soil due to the retardation of HA and FA and due to the compensation of the other cations released from the soil to the solution.  相似文献   

18.
制革废水与污泥中铬资源的回收及综合利用   总被引:8,自引:0,他引:8  
综述了国内外对制革工业产生的废水、污泥中铬的回收及综合利用方面的研究及最新进展。  相似文献   

19.
This paper shows that synchrotron-based fluorescence and absorption-edge computed microtomographies (CMT) are well-suited for determining the compartmentalization and concentration of metals in hyperaccumulating plant tissues. Fluorescence CMT of intact leaf, stem, and root samples revealed that Ni concentrated in stem and leaf dermal tissues and, together with Mn, in distinct regions associated with the Ca-rich trichomes on the leaf surface of the nickel hyperaccumulator Alyssum murale "Kotodesh". Metal enrichment was also observed within the vascular system of the finer roots, stem, and leaves but absent from the coarser root, which had a well-correlated metal coating. Absorption-edge CMT showed the three-dimensional distribution of the highest metal concentrations and verified that epidermal localization and Ni and Mn co-localization at the trichome base are phenomena that occurred throughout the entire leaf and may contribute significantly to metal detoxification and storage. Ni was also observed in the leaf tips, possibly resulting from release of excess Ni with guttation fluids. These results are consistent with a transport model where Ni is removed from the soil by the finer roots, carried to the leaves through the stem xylem, and distributed throughout the leaf by the veins to the dermal tissues, trichome bases, and in some cases the leaf tips.  相似文献   

20.
Enzymatic activities involved in decay processes of natural aromatic macromolecules, such as humic acids (HA) and lignin by white rot fungi, have been widely investigated. However, the physical and chemical analysis of degradation products of these materials has not been intensively explored. Fourier transform cyclotron resonance mass spectrometry (FTICR MS) and 1H NMR as well as CHNOS and size exclusion chromatography were employed to study the mechanisms of HA degradation by Trametes sp. M23 and Phanerochaete sp. Y6. Size exclusion chromatography analyses demonstrate and provide evidence for HA breakdown into low MW compounds. The 1H NMR analysis revealed oxidation, a decrease in the aromatic content, and an indication of demethylation of the HA during biodegradation. Evidence for oxidation was also obtained using CHNOS. Analysis of FTICR MS results using a new software program developed by our group (David Mass Sort) revealed consecutive series of masses suggesting biochemical degradation trends such as oxidation, aromatic cleavage, and demethylation. These results are in agreement with the 1H NMR analysis and with the suggested role of the ligninolytic system leading to HA degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号