首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 75 毫秒
1.
基于粒子群优化算法的最佳熵阈值图像分割   总被引:14,自引:6,他引:14  
图像分割是自动目标识别的关键和首要步骤。群智能作为一类新兴的演化计算技术已被越来越多的研究者关注。论文研究将群智能中的粒子群优化算法应用到图像分割中,提出了一种新的图像分割算法。新方法基于最佳熵阈值分割技术,用粒子群优化算法自适应选取分割阈值,基于Bayes定理和随机状态转移过程对新算法收敛性的分析表明,新方法能以概率1找到图像的最佳熵阈值。在仿真实验中,针对基准图像和SAR图像分割问题,将遗传算法与粒子群优化算法分别独立运行10次,对10次得到的阈值以及均值、方差进行了比较,并将运行时间作为算法复杂度的评价指标。统计结果显示,论文算法不仅能够对图像进行准确的分割,而且运行时间明显较短。仿真结果表明,基于粒子群优化的图像分割算法是可行的、有效的。  相似文献   

2.
借助于粒子群优化算法,进一步对图像分割技术开展相关研究,具体研究方法是针对常规分割技术与现代分割技术的联合运用,通过对粒子群优化算法,建立并且完善具有一定自适应功能的图像分割方法,以此可以达到自动、精确以及快速分割图像的重要作用.  相似文献   

3.
基于粒子群优化算法的最佳熵阈值图像分割   总被引:1,自引:0,他引:1  
研究图像的空间信息和灰度的信息图像分割,从中提取感兴趣的目标.针对传统阈值算法虽然考虑了图像的空间信息,但是由于解空间维数增加,搜索范围增大,导致了计算时间延长,求解最优阈值的速度较低,同时传统二维熵的计算中只考虑了像素的概率,忽略了灰度的概率,导致分割不准确.为了充分利用灰度图像的灰度信息和空间信息,提高分割精确度和最优阈值的求解速度,提出一种基于粒子群算法的阈值分割方法(PSO-SDAIVE算法).算法对传统的二维直方图进行改进,生成差值属性灰度直方图,同时对灰度均值和二维熵的计算进行改进,生成空间差值属性信息值熵(SDAIVE),最后用粒子群算法来搜索SDAIVE的最大值.对头部CT图像进行分割进行了仿真,实验结果表明,能够对图像进行准确的分割,而且运行时间明显较短,证明粒子群优化的图像分割算法是可行和有效的.  相似文献   

4.
基于量子粒子群算法的Ostu图像阈值分割   总被引:4,自引:0,他引:4  
二维Ostu方法同时考虑了图像的灰度信息和像素间的空间邻域信息,是一种有效的图像分割方法.针对二维Ostu方法计算量大的特点,采用量子粒子群算法来搜索最优二维阈值向量,每个粒子代表一个可行的二维阈值向量,通过各个粒子的飞行来获得最优阈值.结果表明,所提出的方法不仅能得到理想的分割结果,而且计算量大大减少,达到了快速分割的目的,便于二维Ostu方法的实时应用.  相似文献   

5.
针对基本粒子群算法目前存在的收敛速度过慢且容易于陷入局部极值等方面问题,提出根据蜂群算法的领域搜索思想,改变算法中粒子领域结构。通过借鉴蜂群的领域搜索策略解决粒子群算法陷入局部极值的问题,提高收敛速度。并将改进后粒子群算法应用于阈值图像分割中,仿真结果表明改进算法在图像阈值分割中减少阈值的寻优时间,优化收敛精度,提高图像处理的实时性和精度性。  相似文献   

6.
针对单阈值图像分割方法在求取比较复杂的图像时效果不理想及粒子群算法容易陷入局部最优且速度较慢等等问题,提出了基于混沌粒子群优化算法的多阈值图像分割方法。该方法利用混沌运动随机性、遍历性和初值敏感性,将混沌粒子群优化算法与多阈值法相结合作全局搜索,实验结果表明了基于混沌粒子群优化算法的多阈值图像分割法用于阈值寻优减少了搜索时间,并且运行时间不随阈值数目的增加而显著增加。  相似文献   

7.
图像分割是由图像处理到图像分析的关键步骤。针对聚类分割对初始聚类中心有较大依赖的局限性,提出了一种基于改进粒子群优化(PSO)算法和遗传变异的图像分割模型PSOM-K(Particle Swarm Optimization Mutations-K-means)。首先,对PSO公式进行改进,即增加了随机邻居粒子位置对自身位置的影响,并扩大了算法的搜索空间,使算法能快速地找到全局最优解;其次,结合遗传算法的变异操作来提高模型的泛化能力;然后,将改进后的PSO算法从红(R)、绿(G)、蓝(B)三通道来初始化k均值(k-means)聚类中心的位置;最后,用k-means从R、G、B三通道对图像进行分割并合并这三通道的图像。在伯克利分割数据集(BSDS500)上的实验结果表明,在k=4时,PSOM-K在特征相似性(FSIM)上相较于CEFO (Chaotic Electromagnetic Field Optimization)算法提升了7.7%~12.69%,相较于WOA-DE(Whale Optimization Algorithm-Differential Evolution)方法提升了5...  相似文献   

8.
冯斌  王璋  孙俊 《计算机应用研究》2008,25(8):2402-2404
二维Otsu方法同时考虑了图像的灰度信息和像素间的空间邻域信息,是一种有效的图像分割方法。针对二维Otsu方法计算量大的特点,采用量子粒子群算法来搜索最优二维阈值向量, 每个粒子代表一个可行的二维阈值向量,通过各个粒子的飞行来获得最优阈值。结果表明,所提出的方法不仅能得到理想的分割结果,而且计算量大大减少,达到了快速分割的目的,便于二维Otsu方法的实时应用。  相似文献   

9.
虽然Snake模型是一种有效的基于参数的轮廓探测方法,但由于其对初始位置过于敏感,不但参数选取缺乏严格的理论指导,且不能处理拓扑结构改变的问题。为此,针对Snake模型在弱边缘处容易溢出等不足,首先通过引入区域信息对Snake模型的图像力进行了修正,然后对Snake模型容易陷入局部极小化的问题,利用粒子群优化算法的全局优化特性和良好的数值稳定性来对Snake模型的分割结果进行优化。人工合成图像和医学图像的实验结果表明,该方法是有效的。  相似文献   

10.
把粒子群算法应用到多阈值图像分割中,结合已有的模糊C-均值聚类法提出了一种基于模糊技术的粒子群优化多阈值图像分割算法。FCM聚类算法是一种局部搜索算法,对初始值较为敏感,容易陷入局部极小值而不能得到全局最优解。PSO算法是一种基于群体的具有全局寻优能力的优化方法。将FCM聚类算法和PSO算法结合起来,将FCM聚类算法的聚类准则函数作为PSO算法中的粒子适应度函数。仿真实验表明新算法在最大熵评判准则下能够得到最优阈值。  相似文献   

11.
针对图像分割中最优阈值选择的问题,将粒子群优化算法和数据场理论相结合,提出一种图像二维阈值分割算法.首先把数据场的理论引入到图像处理中,将图像的灰度值空间映射到数据场的势空间;然后通过自适应的粒子群优化算法寻找数据场中最大势值,该势值对应最优阈值;最后根据找到的阈值进行图像分割.在进行空间映射的过程中,将二维直方图中的序偶?p,q?视作数据对象,其中p代表像素的灰度值,q代表邻域的灰度值,选用拟核力场高斯势函数计算各数据对象之间的相互作用,生成了二维直方图的三维数据场.文中亦对数据场的各个参数进行了详尽的探讨.实验结果表明,文中算法不仅合理、有效,而且大大降低了计算的复杂性,能够适应大多数图像的分割.  相似文献   

12.
陈劲 《计算机系统应用》2012,21(11):170-173
指纹识别作为生物识别技术最为成功的应用之一,近年来已得到快速发展和普及.而指纹图像分割技术是指纹处理特征点提取的基础,同时也是高效识别指纹的关键,直接影响整个指纹识别系统的性能.本文在对相关的指纹图像分割方法分析的基础上,利用粒子群算法的阈值分割方法和方向图的指纹图像分割技术的优点,进一步研究并提出了一个混合分割方法.实验结果表明,这两种方法的结合运用可以获得良好指纹图像分割效果.  相似文献   

13.
虽然Snake模型是一种有效的基于参数的轮廓探测方法,但由于其对初始位置过于敏感,不但参数选取缺乏严格的理论指导,且不能处理拓扑结构改变的问题。为此,针对Snake模型在弱边缘处容易溢出等不足,首先通过引入区域信息对Snake模型的图像力进行了修正,然后对Snake模型容易陷入局部极小化的问题,利用粒子群优化算法的全局优化特性和良好的数值稳定性来对Snake模型的分割结果进行优化。人工合成图像和医学图像的实验结果表明,该方法是有效的。  相似文献   

14.
阈值法分割图像时只利用图像的灰度信息,具有直观、实现简单的特点。针对传统的粒子群优化算法(Particle Swarm Optimization,PSO)分割图像易陷入局部最优的缺点,提出一种基于改进粒子群优化算法的Otsu图像阈值分割方法。以Otsu算法的类间方差作为适应度函数,在每次迭代中选取适应度较好的粒子同时加入新的粒子,以提高粒子多样性。实验表明,与Otsu算法和PSO算法相比,改进的粒子群优化算法不仅加快了收敛速度和运算速度,而且提高了图像分割的准确率。  相似文献   

15.
采用了一种模拟退火思想的粒子群算法与最大类间方差法相结合的快速阈值分割法对图像进行分割。用粒子群优化算法来搜索阈值向量,每个粒子代表一个可行的阈值向量,通过粒子间的协作来获得最优阈值。为了提高收敛速度,把模拟退火的思想应用在粒子群算法中,最后仿真结论表明,该方法在继承标准粒子群算法原理简单、易于实现、协同搜索等优点的同时,还避免了标准粒子群算法的收敛速度慢问题,有更强的寻优能力,得到理想的结果的同时计算量大大减少。权衡分割精度和计算效率两个方面,文中方法不失为一种实用有效的图像分割算法。  相似文献   

16.
基于改进粒子群算法的图像闭值分割方法   总被引:1,自引:0,他引:1  
针对图像提取问题,最优阈值选取是否合理对图像分割效果至关重要。在处理不同种类图像区域时,粒子群算法(PSO)由于早熟现象难以准确计算最优分割阈值,因此导致图像分割准确率低。为了提高图像分割准确率且准确地提取出图像目标,提出一种基于混沌粒子群算法(CPSO)的图像阈值分割方法。受益于混沌运行的遍历性、对初始条件的敏感性等优点,CPSO很好地解决了PSO的粒子群过早聚集和陷入局部最优等难题,加快了全局搜索最优解的能力。采用具体图像对CPSO算法图像分割性能进行仿真实验,结果表明,相比于其它图像分割算法,CPSO不仅加快了运算速度,提高了图像分割效率,而且提高了图像分割准确率,非常适合于图像实时分割处理。  相似文献   

17.
将微粒群算法和二维模糊熵阏值分割法结合,提出了一种基于微粒群和二维模糊熵的图像分割方法.该方法根据像素点灰度值和区域灰度均值所建立的二维灰度直方图,以二维模糊熵作为微粒群算法的适应度函数,利用微粒群算法搜索点灰度值和区域灰度均值所对应的模糊参数最优组合,进而确定相应的分割阈值.对几例真实目标图像的对比分割实验结果表明,该文方法性能优越,是一种有效的图像分割方法.  相似文献   

18.
介绍了一种免疫克隆粒子群优化(IC PSO)算法来进行函数优化,目的在于克服基本粒子群优化(PSO)算法容易陷入局部极值的不足,从而实现全局搜索.通过免疫克隆原理的应用,根据亲和度的高低进行粒子克隆选择、淘汰和高频变异,提高了种群的多样性,增强了算法全局搜索的能力,提高了收敛速度和精度.实验结果表明,该算法完成全局搜...  相似文献   

19.
介绍PSO算法原理和特点,通过在粒子选取、惯性权重和局部搜索上改进,提出一种改进的粒子群优化算法,并与0.618法相结合,结合学习经验进行迭代更新,用于局部函数优化问题。同时提出根据最佳熵最值将PSO算法应用于图像分割,对于图像分割领域有一定的参考价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号