首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 328 毫秒
1.
PTT/PANI复合导电纤维的制备与性能   总被引:1,自引:0,他引:1       下载免费PDF全文
采用原位聚合法制备了PTT/PANI复合导电纤维,探讨了反应时间、等离子预处理、拉伸状态对复合纤维电导率的影响,并研究了PTT/PANI复合纤维的表面形貌、热学性能及力学性能。结果表明:纤维表面形成的聚苯胺导电层赋予了纤维优良的导电性能,其电导率可达10-2S/cm;对纤维进行氧气等离子预处理可明显提高复合纤维的电导率;反应时间对复合纤维的电导率也有较大影响;PTT/PANI复合纤维经拉伸后导电性能明显下降。复合纤维的热稳定性在高于430℃时优于基质纤维并在一定程度上提高了基质纤维的力学性能。  相似文献   

2.
探讨氧气等离子处理对超高分子量聚乙烯(UHMWPE)纤维力学性能的影响。通过SEM分析处理前后纤维表面形貌的变化,并分别改变等离子处理时间、反应功率及氧气压强,研究各因素对纤维力学性能的影响程度。试验结果表明:经氧气等离子处理后,UHMWPE纤维表面因等离子刻蚀作用而变得粗糙,纤维表面能提高,纤维断裂强度较未处理时有一定的降低,而断裂伸长率有所增加。  相似文献   

3.
采用原位聚合法制备了UHMWPE/PANI复合导电纤维。探讨了氧化剂种类及过硫酸铵浓度对复合纤维电导率及表面形态的影响,并研究了UHMWPE/PANI复合纤维的化学结构及力学性能。结果表明:纤维表面形成的聚苯胺导电层赋予了纤维一定的导电性能,以过硫酸铵为氧化剂制得的复合纤维的导电性能最强,其电导率可达10-1S/cm;随过硫酸铵浓度的增加,复合纤维的电导率呈现先增后减的趋势,以30g/L时制得的复合纤维的电导率最高。复合纤维是基质纤维与聚苯胺的共混体系,且导电处理未引起基质纤维分子链结构的变化。导电处理后,纤维的断裂强度较未处理前有少量增加,断裂伸长率基本保持不变。  相似文献   

4.
为了改善PTT形状记忆织物的润湿性能,对其进行氧气等离子体处理.通过SEM分析了处理前后纤维表面形貌的变化.分别改变等离子处理时间、反应功率及氧气压强等参数,研究各因素对织物润湿性的影响关系,实验表明,经氧气等离子体处理后,PTT纤维表面因等离子刻蚀作用而变得粗糙,纤维表面能提高,纤维亲水性增强,PTT形状记忆织物的润湿性有较明显改善.  相似文献   

5.
《印染》2015,(13)
以苯胺为原料,采用原位聚合法制备UHMWPE/PANI复合导电纤维。研究了掺杂条件,如掺杂酸种类、盐酸浓度对复合纤维电导率及表面形态的影响。结果表明:纤维表面形成的聚苯胺导电层赋予纤维一定的导电性能,以酸性较强的无机酸如硫酸、盐酸掺杂时,制得的复合纤维电导率较高。随着盐酸浓度的增加,纤维表面的聚苯胺导电层粗糙度增加,复合纤维的增重率呈现先增后减的趋势,电导率亦呈现相同的变化趋势,盐酸浓度0.7 mol/L时制得的复合纤维电导率最高。  相似文献   

6.
研究氧气低温等离子体处理对聚苯硫醚纤维性能的影响。在不同水平的压强、功率、时间条件下,对聚苯硫醚纤维进行氧气低温等离子处理,并测试其静摩擦因数、动摩擦因数、断裂强度损失率、断裂伸长减小率、毛细高度的变化情况。指出:处理功率对纤维机械性能影响显著,处理压强对纤维摩擦性能和润湿性能影响较大。根据综合平衡法确定最佳工艺为:压强20 Pa,功率200 W,时间300 s。  相似文献   

7.
探讨氧气等离子体处理对PTT织物形状记忆功能的改善效果.通过SEM分析了氧气等离子体处理前后纤维表面形貌的变化,并改变等离于体处理时间、反应功率及氧气压强,研究了各因素对织物记忆效果的影响关系.试验结果表明,氧气等离子体处理使得PTT纤维表面形成微细凹坑并产生凸状沉积物,增大了其表面粗糙度,使PTT形状记忆织物的记忆效果有了较大幅度的改善.  相似文献   

8.
为提高涤纶的导电性能,以涤纶长丝纱为基材,采用基于苯胺原位聚合的连续导电方法,制备涤纶/聚苯胺(PET/PANI)复合导电纱。探讨了导电处理工艺氧化剂浓度、处理掺杂酸和苯胺的浓度及处理速度对导电纱导电性能的影响,并测定与分析了纤维的表面形貌、化学结构、热学性能及力学性能。结果表明:经导电处理后,PET纱线表面及内部包覆并填充了导电态PANI;反应液浓度及处理速度对PET/PANI复合导电纱的电导率有较大影响,制得的导电纱电导率最高可达1.5 S/cm以上;PANI的存在降低了PET的热稳定性;相比PET纱,PET/PANI复合导电纱的断裂强度和断裂伸长率有小幅增长,但初始模量却有较大的下降。  相似文献   

9.
研究不同等离子体作用时间、压强和反应功率对丝素整理PTT织物吸湿性的影响。利用等离子体处理技术对PTT织物进行预处理,然后用丝素溶液处理得到PTT织物,测试了不同等离子体处理条件下PTT织物的芯吸高度。试验表明:等离子体处理后,PTT纤维表面因等离子刻蚀作用变得粗糙,丝素整理后增重率随着作用时间的延长递增,随着作用时间、压强及反应功率的增加,织物的吸湿性也有不同程度的提高。认为等离子体处理可使丝素整理PTT织物的吸湿性得到改善。  相似文献   

10.
应用原位聚合法的PTT/毛/聚苯胺复合导电纱制备与性能   总被引:1,自引:0,他引:1  
本文采用了一种新颖的基于原位聚合法的连续制备导电纱线的方法,以PTT/毛混纺纱为原料,制备了PTT/毛/PANI复合导电纱线,探讨了反应液浓度对复合导电纱电导率的影响,并研究了PTT/毛/PANI复合导电纱的表面形貌、化学结构及力学性能。研究结果表明:随着反应液浓度的提高,复合导电纱线中的聚苯胺含量增大,纱线的电导率提高,可达1.08×10-2S/cm;红外分析表明复合导电纱是PTT、羊毛与聚苯胺的共混体系;纱线经导电处理后,断裂强力、断裂伸长率与初始模量均有所提高,但屈服应力和屈服伸长率都有一定程度的下降。  相似文献   

11.
等离子体处理后UHMWPE纤维与LDPE复合材料的性能   总被引:1,自引:0,他引:1       下载免费PDF全文
姜生 《纺织学报》2007,28(9):57-60
为了改善超高分子量聚乙烯纤维的界面性能,对其进行介质阻挡放电氩等离子体处理以进行表面改性。将等离子处理前后的超高分子量聚乙烯纤维分别与低密度聚乙烯基体制成相同体积比的复合材料,对试样进行纵、横向拉伸性能的测试,探讨经等离子体处理前后复合材料的界面性能。测试结果表明:经氩等离子体处理后纤维的黏合性能得到了较为显著的提高。  相似文献   

12.
采用不同处理参数对氨纶进行等离子体预处理,测试最终氨纶导电长丝的电导率,研究不同预处理参数对氨纶导电长丝电导率的影响以及该导电长丝在不同环境条件下的电学稳定性。  相似文献   

13.
超高分子量聚乙烯纤维复合材料界面性质的研究进展   总被引:2,自引:0,他引:2  
熊结刚  晏雄 《产业用纺织品》2005,23(4):35-38,44
从提高超高分子量聚乙烯纤维与基体的粘接性入手,详细介绍了超高分子量聚乙烯纤维的各种表面处理方法,如等离子体处理、电晕放电和化学氧化等,同时介绍了目前超高分子量聚乙烯纤维复合材料常用的聚氨酯类、乙烯酯类树脂体系的特点和应用现状及前景。  相似文献   

14.
研究了介质阻挡放电改性聚丙烯纤维与未改性聚丙烯纤维的掺量、长度以及改性纤维的介质阻挡放电处理条件对纤维增强混凝土抗冲击性能的影响和机理。结果表明,改性与未改性纤维的掺量和长度对混凝土抗冲击性能影响的变化趋势相同,其抗冲击强度随着掺量增加而加强,但是掺加改性纤维明显强于未改性纤维,掺纤维混凝土抗冲击性能强于未加纤维混凝土,掺加纤维长度最佳值为20 mm;小功率(80 W)和短时间(0.16 s)改性纤维混凝土的抗冲击强度比未改性纤维的有所减低,但随着处理功率和时间的增加而提高,大功率和长时间(超过80 W和0.16 s)处理的改性纤维混凝土抗冲击强度明显强于未改性纤维混凝土。  相似文献   

15.
孙雷  蔡莹莹  叶伟  季涛  孙启龙 《纺织学报》2019,40(3):96-101
针对水龙带增强层高强涤纶管状织物与三元乙丙橡胶内衬黏结性能差的问题,采用介质阻挡放电(DBD)等离子体对高强涤纶管状织物表面进行处理,研究了处理时间对纤维表面形貌和化学组成、丝束断裂强力、织物芯吸高度及剥离强度的影响。结果表明:经DBD等离子体处理后,高强涤纶表面产生明显的刻蚀痕迹,纤维表面极性官能团增加,织物芯吸高度增加,丝束断裂强力随处理时间的延长而下降;处理时间为60 s时,强度损失率为3.9%;处理后高强涤纶管状织物与三元乙丙橡胶内衬的黏结性能得到显著改善,处理时间为60 s时,剥离强度提升35.1%。  相似文献   

16.
针对超高分子量聚乙烯(UHMWPE)纤维熔点低、易蠕变等不足,以油田井下作业环境为测试条件,研究了UHMWPE纤维在干热和湿热状态下的力学稳定性能,借助差示扫描量热仪、热重分析仪、扫描电子显微镜、X射线衍射仪和电子能谱分析仪,表征并分析了UHMWPE纤维的热学性能和微观结构。结果表明:UHMWPE纤维表面在热和处理液的刻蚀作用下产生明显的沟槽;在相同的温度下处理,湿热状态下纤维的力学性能损失比干态下小,尤其在70 ℃下湿热连续处理30 d,纤维强力下降率基本控制在6%以内;对纤维进行干热处理,当温度接近纤维熔点时,随着温度的升高,纤维强力下降明显,140 ℃下干热处理1 h,强力最大下降率达19.87%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号