首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This research deals with the dynamic instability analysis of double-walled carbon nanotubes (DWCNTs) conveying pulsating fluid under 2D magnetic fields based on the sinusoidal shear deformation beam theory (SSDBT). In order to present a realistic model, the material properties of DWCNTs are assumed viscoelastic using Kelvin–Voigt model. Considering the strain gradient theory for small scale effects, a new formulation of the SSDBT is developed through the Gurtin–Murdoch elasticity theory in which the effects of surface stress are incorporated. The surrounding elastic medium is described by a visco-Pasternak foundation model, which accounts for normal, transverse shear and damping loads. The van der Waals interactions between the adjacent walls of the nanotubes are taken into account. The size dependent motion equations and corresponding boundary conditions are derived based on the Hamilton’s principle. The differential quadrature method in conjunction with Bolotin method is applied for obtaining the dynamic instability region. The detailed parametric study is conducted, focusing on the combined effects of the nonlocal parameter, magnetic field, visco-Pasternak foundation, Knudsen number, surface stress and fluid velocity on the dynamic instability of DWCNTs. The results depict that the surface stress effects on the dynamic instability of visco-DWCNTs are very significant. Numerical results of the present study are compared with available exact solutions in the literature. The results presented in this paper would be helpful in design and manufacturing of nano/micro mechanical systems in advanced biomechanics applications with magnetic field as a parametric controller.  相似文献   

2.
An unsteady two-fluid model of blood flow through a tapered arterial stenosis with variable viscosity in the presence of variable magnetic field has been analysed in the present paper. In this article, blood in the core region is assumed to obey the law of Jeffrey fluid and plasma in the peripheral layer is assumed to be Newtonian. The values for velocity, wall shear stress, flow rate and flow resistance are numerically computed by employing finite-difference method in solving the governing equations. A comparison study between the velocity profiles obtained by the present study and the experimental data represented graphically shows that that the rheology of blood obeys the law of Jeffrey fluid rather than that of Newtonian fluid. The effects of parameters such as taper angle, radially variable viscosity, hematocrit, Jeffrey parameter, magnetic field and plasma layer thickness on physiologically important parameters such as wall shear stress distribution and flow resistance have been investigated. The results in the case of radially variable magnetic field and constant magnetic field are compared to observe the effect of magnetic field in driving the blood flow. It is observed that increase in hematocrit increases the wall shear stress. The values of wall shear stress and flow resistance are obtained at various time instances and compared. It is pertinent to note that the magnitudes of flow resistance are higher in the case of converging tapered than non-tapered and diverging tapered artery.  相似文献   

3.
The unsteady rotating flow of a laminar incompressible viscous electrically conducting fluid over a rotating sphere in the vicinity of the equator has been studied. The fluid and the body rotate either in the same direction or in opposite directions. The effects of surface suction and magnetic field have been included in the analysis. There is an initial steady state that is perturbed by a sudden change in the rotational velocity of the sphere, and this causes unsteadiness in the flow field. The nonlinear coupled parabolic partial differential equations governing the boundary-layer flow have been solved numerically by using an implicit finite-difference scheme. For large suction or magnetic field, analytical solutions have also been obtained. The magnitude of the radial, meridional and rotational velocity components is found to be higher when the fluid and the body rotate in opposite directions than when they rotate in the same direction. The surface shear stresses in the meridional and rotational directions change sign when the ratio of the angular velocities of the sphere and the fluid 0. The final (new) steady state is reached rather quickly which implies that the spin-up time is small. The magnetic field and surface suction reduce the meridional shear stress, but increase the surface shear stress in the rotational direction.  相似文献   

4.
By means of a nonlocal viscous fluid model, an investigation is carried out of the problem of penetration of a cylindrical projectile into a plate leading to a failure of the plate by a plug formation. The effect of impact is represented by a uniform initial velocity distribution over a circular region on the surface of the plate. The behavior of this plate material is assumed to be viscous and spatially nonlocal, and only the effects of vertical shearing stress are considered. The expression of stress, velocity and displacement are obtained and the calculated displacement profiles are compared with some existing experimental profiles.  相似文献   

5.
In the present paper, nonlocal couple stress theory is developed to investigate free vibration characteristics of functionally graded (FG) nanobeams considering exact position of neutral axis. The theory introduces two parameters based on nonlocal elasticity theory and modified couple stress theory to capture the size effects much accurately. Therefore, a nonlocal stress field parameter and a material length scale parameter are used to involve both stiffness-softening and stiffness-hardening effects on responses of FG nanobeams. The FG nanobeam is modeled via a higher-order refined beam theory in which shear deformation effect is verified needless of shear correction factor. A power-law distribution is used to describe the graded material properties. The governing equations and the related boundary conditions are derived by Hamilton's principle and they are solved applying Galerkin's method, which satisfies various boundary conditions. A comparison study is performed to verify the present formulation with the provided data in the literature and a good agreement is observed. The parametric study covered in this paper includes several parameters, such as nonlocal and length scale parameters, power-law exponent, slenderness ratio, shear deformation, and various boundary conditions on natural frequencies of FG nanobeams in detail.  相似文献   

6.
The unsteady incompressible flow and heat transfer of a viscous electrically conducting fluid in the vicinity of a stagnation point of a general three-dimensional body have been studied when the velocity in the potential flow varies arbitrary with time. The magnetic field is applied normal to the surface. The effects of viscous dissipation and Ohmic heating are included in the analysis. Both nodal-point region (0?c?1, where c=b/a is the ratio of the velocity gradients in y and x directions in the potential flow) and saddle-point region (−1?c<0) are considered. The semi-similar solution of the Navier-Stokes equations and the energy equation are obtained numerically using an implicit finite difference scheme. Also a self-similar solution is found when the velocity in the potential flow, the magnetic field and the wall temperature vary with time in a particular manner. The asymptotic behaviour of the self-similar equations for large η is obtained which enables us to find the upper limit of the unsteady parameter λ. One interesting result is that the magnetic field tends to delay or prevent flow reversal in y-component of the velocity. The surface shear stresses in x and y directions and the surface heat transfer increase with the magnetic field as well as with the accelerating free stream velocity.  相似文献   

7.
The flow and heat transfer of an incompressible electrically conducting fluid over a rotating infinite disk are studied in the present paper. The disk finds itself subjected to a uniform normal magnetic field. The particular interest lies in searching for the effects of an imposed radial electric field on the behavior of the physical flow. The gradient of an electric potential generated on the disk penetrates through the fluid and greatly influences the boundary layer formation. The presented model representing the fluid motion is a general case since it reduces to the traditional Karman’s viscous pump when the electric potential is ignored. The governing Navier–Stokes and Maxwell equations of the constructed model together with the energy equation are converted into self-similar forms using suitable similarity transformations. The flow and thermal boundary layers are shown to be much affected by the presence of a uniform radial electric parameter. Some parameters of fundamental physical significance such as the surface shear stresses in the radial and tangential directions and the heat transfer rate are numerically evaluated. The effects of electric conductivity of the disk on the flow and forced convection heat transfer are further discussed.  相似文献   

8.
The characteristics of flow and heat transfer of a fluid in a channel with oscillatory stretching walls in the presence of an externally applied magnetic field are investigated. The fluid considered is a second-grade viscoelastic electrically conducting fluid. The partial differential equations that govern the flow are solved by developing a suitable numerical technique. The computational results for the velocity, temperature and the wall shear stress are presented graphically. The study reveals that flow reversal takes place near the central line of the channel. This flow reversal can be reduced to a considerable extent by applying a strong external magnetic field. The results are found to be in good agreement with those of earlier investigations.  相似文献   

9.
Unsteady hydromagnetic flow of an electrically conducting viscous incompressible fluid in a rotating system under the influence of a uniform transverse magnetic field is investigated when one of the plates is set into motion with the time dependent velocity U(t) in its own plane. Two cases of interest, namely, impulsive start as well as accelerated start of the moving plate are discussed. The asymptotic behaviour of the solution is also analysed for both small and large time to highlight the transient approach to the final steady state and effects of rotation parameter as well as Hartmann number. The shear stresses at the moving plate due to the primary and secondary flows are derived in both cases. It is found that the shear stress components due to the primary flow decrease, whereas that due to the secondary flow increase with the increase in rotation parameter.  相似文献   

10.
Effects of a magnetic field and fluid nonlinearity are investigated for the rotational flow of the Carreau-type fluid while viscous dissipation is taken into account. The governing motion and energy balance equations are coupled, adding complexity to the already highly correlated set of differential equations. The numerical solution is obtained for the narrow-gap limit and steady-state base flow. Magnetic field effect on local entropy generation due to steady two-dimensional laminar forced convection flow was investigated. This study was focused on the entropy generation characteristics and its dependency on various dimensionless parameters. The effects of the Hartmann number, the Brinkman number, and the Deborah number on the stability of the flow were investigated. The introduction of the magnetic field induces a resistive force acting in the opposite direction of the flow, thus causing its deceleration. Moreover, the study shows that the presence of magnetic field tends to slow down the fluid motion. It, however, increases the fluid temperature. Moreover, the total entropy generation number decreases as the Hartmann number and fluid elasticity increase and increases with increasing Brinkman number.  相似文献   

11.
Summary The influence of Hall currents on the free and forced convective flow of a viscous rotating fluid between two horizontal plates is analysed. An exact solution for the velocity and temperature have been obtained. the effects of Hall currents on the velocity, the temperature and shear stress are discussed analytically and graphically.With 5 Figures  相似文献   

12.
The effect of a magnetic field on the flow and oxygenation of an incompressible Newtonian conducting fluid in channels with irregular boundaries has been investigated. The geometric parameter δ, which is a ratio of the mean half width of the channel d to the characteristic length λ along the channel over which the significant changes in the flow quantities occur, has been used for perturbing the governing equations. Closed form solutions of the various order equations are presented for the stream function. The equations for oxygen partial pressure remain nonlinear even after perturbation, therefore a numerical solution is presented. The expressions for shear stress at a wall and pressure distributions are derived. Here the separation in the flow occurs at a higher Reynolds number than the corresponding non-magnetic case. It is found that the magnetic field has an effect on local oxygen concentration but has a little effect on the saturation length.  相似文献   

13.
李海涛  彭向和  陈伟民 《功能材料》2006,37(5):710-712,715
建立了微观颗粒的动力学模型,提出了相应的算法,模拟了二维状态下颗粒成链及其剪切流动过程,表明剪切过程中存在旧链断裂和新链形成,得到了流动时磁流变液的剪切应力,并模拟了高剪切速率下微结构的演变过程,发现新链形成速度小于旧链断裂速度,出现了剪应力下降现象.  相似文献   

14.
Summary The hydromagnetic spin-up and spin-down of an incompressible electrically conducting fluid on a heated infinite disk rotating in a vertical plane in the presence of a magnetic field and a buoyancy force have been studied. The flow is non-axisymmetric due to the imposition of the buoyancy force. We have considered the situation where there is an initial steady state which is perturbed by suddenly changing the angular velocity of the disk. By using suitable transformations the Navier-Stokes and energy equations with four independent variables (x, y, z, t) are reduced to a system of partial differential equations with two independent variables (,t *). Also, these transformations uncouple the momentum and energy equations, resulting in a primary axisymmetric flow with an axial magnetic field, in an energy equation dependent on the primary flow and in a buoyancy induced secondary cross flow dependent on both primary flow and energy.The results indicate that the effect of the step-change in the angular velocity of the disk is more pronounced on the primary flow than on the secondary flow and the temperature field. For both spin-up and spin-down cases the surface shear stress in the non-axial direction normal to gravity for the primary flow and the surface shear stresses for the secondary flow increase with the magnetic parameter, whilst the surface shear stress in the vertical direction and the heat transfer at the surface decrease as the magnetic parameter increases. Also, the secondary flow near the disk dominates the primary flow. We have also developed an asymptotic analysis for large magnetic parameters which complements well the numerical results obtained in the lower magnetic parameter range.  相似文献   

15.
In the present study, the effects of the magnetic field on the entropy generation during fluid flow and heat transfer of a Sisko-fluid over an exponentially stretching surface are considered. The similarity transformations are used to transfer the governing partial differential equations into a set of nonlinear-coupled ordinary differential equations. Runge-Kutta-Fehlberg method is used to solve the governing problem. The effects of magnetic field parameter M, local slip parameter λ, generalized Biot number γ, Sisko fluid material parameter A, Eckert number Ec, Prandtl number Pr and Brinkman number Br at two values of power law index on the velocity, temperature, local entropy generation number NG and Bejan number Be are inspected. Moreover, the tabular forms for local skin friction coefficient and local Nusselt number under the effects of the physical parameters are exhibited. The current results are helpful in checking the entropy generation for Sisko-fluid. It is found that, an extra magnetic field parameter makes higher Lorentz force that suppresses the velocity. For shear thinning fluids (n < 1), the temperature dominates and the velocity rises. Local entropy generation number is more for larger generalized Biot number, magnetic field parameter and Brinkman number. The local skin friction coefficient increases as magnetic field parameter and material parameter are increase and it decreases as local slip parameter increases. The local Nusselt number decreases as magnetic field parameter, local slip parameter and Eckert number are increase, while it increases as material parameter, generalized Biot number and Prandtl number are increase.  相似文献   

16.
The influence of thermal radiation and chemical reaction on the steady MHD heat and mass transfer by a mixed convective flow of a viscous, incompressible, electrically conducting Newtonian fluid (an optically thin gray gas) past a vertical permeable plate was investigated with account for the induced magnetic field. The similarity solutions of the transformed nondimensional governing equations are obtained by the series solution technique. The influence of numerous parameters on the process characteristics is studied.  相似文献   

17.
Summary The development of velocity and temperature fields of an incompressible viscous electrically conducting fluid, caused by an impulsive stretching of the surface in two lateral directions and by suddenly increasing the surface temperature from that of the surrounding fluid, is studied. The partial differential equations governing the unsteady laminar boundary-layer flow are solved numerically using an implicit finite difference scheme. For some particular cases, closed form solutions are obtained, and for large values of the independent variable asymptotic solutions are found. The surface shear stresses inx-andy-directions and the surface heat transfer increase with the magnetic field and the stretching ratio, and there is a smooth transition from the short-time solution to the long-time solution.  相似文献   

18.
Summary An electro-rheological fluid is a material in which a particulate solid is suspended in an electrically non-conducting fluid such as oil. On the application of an electric field, the viscosity and other material properties undergo dramatic and significant changes. In this paper, the particulate imbedded fluid is considered as a homogeneous continuum. It is assumed that the Cauchy stress depends on the velocity gradient and the electric field vector. A representation for the constitutive equation is developed using standard methods of continuum mechanics. The stress components are calculated for a shear flow in which the electric field vector, is normal to the velocity vector. The model predicts (i) a viscosity which depends on the shear rate and electric field and (ii) normal stresses due to the interaction between the shear flow and the electric field. These expressions are used to study several fundamental shear flows: the flow between parallel plates, Couette flow, and flow in an eccentric rotating disc device. Detailed solutions are presented when the shear response is that of a Bingham fluid whose yield stress and viscosity depends on the electric field.  相似文献   

19.
The influence of variation in physical variables on the steady Hartmann flow with heat transfer is studied. An external uniform magnetic field is applied perpendicular to the parallel plates and the fluid is acted upon by a constant pressure gradient. The viscosity and the thermal and electric conductivities are assumed to be temperature dependent. The two plates are kept at two constant but different temperatures and the viscous and Joule dissipations are considered in the energy equation. A numerical solution for the governing non‐linear coupled equations of motion and the energy equation is obtained. The effect of magnetic field, the temperature dependent viscosity, thermal conductivity, and electric conductivity on both the velocity and temperature distributions is examined. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

20.
A mathematical model is presented for transient flow in a pipeline with fluid–structure interaction. Water hammer theory and equations of axial motion for the pipeline are employed and the Poisson, junction and transient shear stress couplings are taken into account, which give rise to four coupled non‐linear, first‐order hyperbolic partial differential equations governing the fluid flow and pipe motion. These equations are discretized in space using the Keller box scheme and the method of lines is employed to reduce the partial differential equations to a system of ordinary differential equations. The resulting system is solved using a backward differentiation formulation method. The effect of transient shear stress on transient flow is investigated and the mechanisms underlying this effect are explored. The results revealed that the influence of transient shear stress can be significant and varies considerably, depending on the boundary conditions, viz, valve closure time. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号