首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nonlactating Holstein cows (n=12) in late pregnancy were used to determine effects of plane of nutrition followed by feed deprivation on metabolic responses to insulin. Beginning 48 d before expected parturition, cows were fed to either a high plane (HP) or a low plane (LP) of nutrition (162 and 90% of calculated energy requirements, respectively). Cows were subjected to an intravenous glucose tolerance test [GTT; 0.25 g of dextrose/kg of body weight (BW)] on d 14 of treatment and a hyperinsulinemic-euglycemic clamp (HEC; 1 μg/kg of BW/h) on d 15. Following 24 h of feed removal, cows were subjected to a second GTT on d 17 and a second HEC on d 18 after 48 h of feed removal. During the feeding period, plasma nonesterified fatty acid (NEFA) concentrations were higher for cows fed the LP diet compared with those fed the HP diet (163.6 vs. 73.1 μEq/L), whereas plasma insulin was higher for cows fed the HP diet during the feeding period (11.1 vs. 5.2 μIU/mL). Glucose areas under the curve during both GTT were higher for cows fed the LP diet than for those fed the HP diet (4,213 vs. 3,750 mg/dL × 60 min) and was higher during the GTT in the feed-deprived state (4,878 vs. 3,085 mg/dL × 60 min) than in the GTT during the fed state, suggesting slower clearance of glucose during negative energy balance either pre-or post-feed deprivation. This corresponded with a higher dextrose infusion rate during the fed-state HEC than during the feed-deprived-state HEC (203.3 vs. 90.1 mL/h). Plasma NEFA decreased at a faster rate following GTT during feed deprivation compared with that during the fed state (8.7 vs. 2.9%/min). Suppression of NEFA was highest for cows fed the HP diet during the GTT conducted during feed deprivation, and lowest for cows fed the HP diet during the fed-state GTT (68.6 vs. 50.3% decrease from basal). Plasma insulin responses to GTT were affected by feed deprivation such that cows had a much lower insulin response to GTT by 24 h after feed removal (995 vs. 3,957 μIU/mL × 60 min). During the fed-state HEC, circulating concentrations of NEFA were 21% below basal for cows fed the HP diet and 62% below basal for cows fed the LP diet; during feed deprivation, NEFA were 79 and 59% below basal for the HP and LP diets, respectively (diet × HEC). Cows that are fed below energy requirements or are feed deprived have slower clearance of glucose and greater NEFA responses to glucose challenge. Additionally, feed deprivation had a large effect on insulin secretion. Overall, effects of feed deprivation were larger than effects of plane of nutrition.  相似文献   

2.
《Journal of dairy science》2022,105(1):842-855
Intense and protracted adipose tissue (AT) fat mobilization increases the risk of metabolic and inflammatory periparturient diseases in dairy cows. This vulnerability increases when cows have endotoxemia—common during periparturient diseases such as mastitis, metritis, and pneumonia—but the mechanisms are unknown. Fat mobilization intensity is determined by the balance between lipolysis and lipogenesis. Around parturition, the rate of lipolysis surpasses that of lipogenesis, leading to enhanced free fatty acid release into the circulation. We hypothesized that exposure to endotoxin (ET) increases AT lipolysis by activation of classic and inflammatory lipolytic pathways and reduction of insulin sensitivity. In experiment 1, subcutaneous AT (SCAT) explants were collected from periparturient (n = 12) Holstein cows at 11 ± 3.6 d (mean ± SE) before calving, and 6 ± 1 d and 13 ± 1.4 d after parturition. Explants were treated with the endotoxin lipopolysaccharide (LPS; 20 µg/mL; basal = 0 µg/mL) for 3 h. The effect of LPS on lipolysis was assessed in the presence of the β-adrenergic agonist and promoter of lipolysis isoproterenol (ISO; 1 µM; LPS+ISO). In experiment 2, SCAT explants were harvested from 24 nonlactating, nongestating multiparous Holstein dairy cows and exposed to the same treatments as in experiment 1 for 3 and 7 h. The effect of LPS on the antilipolytic responses induced by insulin (INS = 1 µL/L, LPS+INS) was established during ISO stimulation [ISO+INS, LPS+ISO+INS]. The characterization of lipolysis included the quantification of glycerol release and the assessment of markers of lipase activity [adipose triglyceride lipase (ATGL), hormone-sensitive lipase (HSL), and phosphorylated HSL Ser563 (pHSL)], and insulin pathway activation (AKT, pAKT) using capillary electrophoresis. Inflammatory gene networks were evaluated by real-time quantitative PCR. In periparturient cows, LPS increased AT lipolysis by 67 ± 12% at 3 h across all time points compared with basal. In nonlactating cows, LPS was an effective lipolytic agent at 3 h and 7 h, increasing glycerol release by 115 ± 18% and 68.7 ± 16%, respectively, relative to basal. In experiment 2, LPS enhanced ATGL activity with minimal HSL activation at 3 h. In contrast, at 7 h, LPS increased HSL phosphorylation (i.e., HSL activity) by 123 ± 11%. The LPS-induced HSL lipolytic activity at 7 h coincided with the activation of the MEK/ERK inflammatory pathway. In experiment 2, INS reduced the lipolytic effect of ISO (ISO+INS: ?63 ± 18%) and LPS (LPS+INS: ?45.2 ± 18%) at 3 h. However, the antilipolytic effect of INS was lost in the presence of LPS at 7 h (LPS+INS: ?16.3 ± 16%) and LPS+ISO+INS at 3 and 7 h (?3.84 ± 23.6% and ?21.2 ± 14.6%). Accordingly, LPS reduced pAKT:AKT (0.11 ± 0.07) compared with basal (0.18 ± 0.05) at 7 h. Our results indicated that exposure to LPS activated the classic and inflammatory lipolytic pathways and reduced insulin sensitivity in SCAT. These data provide evidence that during endotoxemia, dairy cows may be more susceptible to lipolysis dysregulation and loss of adipocyte sensitivity to the antilipolytic action of insulin.  相似文献   

3.
Neutrophils [polymorphonuclear neutrophilic leukocytes (PMNL)] were isolated from 26 Holstein cows in different physiological states (12 ± 1.7 d prepartum, n = 8; 7 ± 0 d postpartum, n = 9; 253 ± 25.2 d postpartum, n = 9) and incubated in vitro for 120 min in a factorial arrangement of treatments with 0, 1.5, or 15 ng/mL of bovine insulin and 0 or 300 μg/mL of the peroxisome proliferator-activated receptor-γ ligand 2,4-thiazolidinedione (TZD). Following the incubations, PMNL functional assays were performed to determine treatment effects on proxies for total, extracellular, and intracellular generation of reactive oxygen species (ROS), neutrophil extracellular trap formation, and phagocytic killing abilities. The ROS production of PMNL collected from cows at 7 d postpartum was reduced compared with that of PMNL from midlactation and prepartum cows, but neutrophil extracellular trap expression was 23 and 36% greater in PMNL from prepartum cows compared with that in PMNL from midlactation and postpartum cows, respectively. Insulin had no effect on PMNL functional assay results. In contrast, TZD inhibited a measurement of total ROS production by 89%, increased extracellular superoxide generation by 43%, but had no effect on the intracellular ROS measured. Interestingly, TZD did not alter the ability of the PMNL to release neutrophil extracellular traps and engulf or kill Staphylococcus aureus. These findings suggest a possible anti-inflammatory effect of TZD that may result in reduced extracellular oxidative damage with maintenance of PMNL antimicrobial activity.  相似文献   

4.
Thiazolidinediones (TZD) are potent synthetic ligands for peroxisome proliferator-activated receptor-γ that have been shown previously to reduce plasma nonesterified fatty acids and increase peripartal dry matter intake (DMI) in dairy cows. Data from Holstein cows (n = 36) entering their second or greater lactation were used to determine whether late prepartum administration of TZD would affect periparturient metabolism, milk production, and ovarian activity. Cows were administered 0, 2.0, or 4.0 mg of TZD/kg of BW by intrajugular infusion once daily from 21 d before expected parturition until parturition. Plasma samples were collected daily from 22 d before expected parturition through 21 d postpartum and twice weekly from wk 4 through 9 postpartum. In response to increasing TZD dosage, plasma nonesterified fatty acid concentrations decreased linearly during the postpartum period (d 0 to +21: 348, 331, 268 ± 31 μEq/L, respectively). Plasma concentrations of glucose were highest in cows administered 4.0 mg of TZD/kg of BW during the peripartum and postpartum periods (d −7 to +7: 57.9, 57.8, 61.1 ± 0.8 mg/dL and d 0 to +21: 51.6, 49.3, 54.7 ± 1.1 mg/dL, respectively). Plasma concentrations of β-hydroxybutyrate were increased during the peripartum period by TZD administration (9.6, 9.9, 10.2 ± 0.3 mg/dL) but were not affected during the postpartum period. Plasma insulin was not affected by treatment during any time period. Postpartum liver triglyceride content was decreased linearly (11.0, 10.4, 4.2 ± 1.6%) and glycogen content was increased linearly (2.16, 2.38, 2.79 ± 0.19%) by prepartum TZD administration. Prepartum TZD administration linearly increased DMI during the peripartum period (d −7 to +7: 16.1, 17.2, 17.3 ± 0.5 kg/d). Cows administered TZD prepartum maintained higher postpartum body condition scores than control cows (wk 1 through 9: 2.77, 2.89, 3.02 ± 0.05). There was no effect of prepartum TZD on milk yield; however, yields of 3.5% fat-corrected milk (52.2, 54.6, 48.0 ± 1.6 kg/d) and most other milk components were decreased in cows that received 4.0 mg of TZD/kg of BW prepartum. Prepartum TZD administration linearly decreased the number of days to first ovulation (29.3, 28.3, 19.0 ± 3.6 d). These results suggest that prepartum administration of TZD improves metabolic health and DMI of periparturient dairy cows and may decrease reliance on body fat reserves during early lactation.  相似文献   

5.
《Journal of dairy science》2019,102(12):11718-11729
Adipose tissue response to endocrine stimuli, such as insulin, is crucial for metabolic adaptation at the onset of lactation in dairy cows. However, the exact molecular mechanisms behind this response are not well understood. Thus, the aim of this study was to determine the dynamics in protein expression and phosphorylation of key components in insulin signaling in subcutaneous (SCAT) and retroperitoneal (RPAT) adipose tissues of Holstein dairy cows. Furthermore, by ex vivo examinations, response to insulin was assessed in SCAT and RPAT at different time points during the periparturient period. Biopsy samples were taken 42 d prepartum, and 1, 21, and 100 d postpartum. Insulin and glucose concentrations were measured in blood serum in consecutive serum samples from d −42 until d +100. After parturition, the majority of the key components were downregulated in both adipose tissues but recovered by d +100. The extent of hormone-sensitive lipase phosphorylation increased postpartum and remained high throughout the experimental period. Strong differences in molecular response were observed between the 2 depots. The RPAT expressed a remarkably greater extent of AMP-activated kinase phosphorylation compared with SCAT, indicating that AMP-activated kinase as an energy sensor is highly active particularly in RPAT in times of energy scarcity. Consequently, this depot expressed a greater extent of hormone-sensitive lipase phosphorylation over the whole experimental period. Insulin response after parturition appeared to be greater in RPAT too, due to the significantly greater expression of the insulin receptor at d +21 and +100. Although insulin concentrations in plasma were low postpartum, the depot-specific changes in molecular modulation of insulin signaling and insulin response suggested that both adipose tissue depots studied were contributing to the periparturient homeorhetic adaptation, although most likely to a different extent.  相似文献   

6.
7.
8.
Leptin is mainly secreted by adipocytes and is implicated in the regulation of metabolic status, feed intake, and body condition. Day length (DL) can affect leptin gene expression and secretion. The aim of the study was to evaluate the effect of DL on gene expression of leptin and leptin receptors in adipose tissue (AT). Four lactating and pregnant Holstein cows were housed in a climate-controlled chamber for 51 d. The first 30 d were used to adapt animals to the new housing conditions. During that period the DL adopted was 12 h light:12 h dark (12:12). The experimental period included 3 different and consecutive phases: 7 d of neutral DL (12:12); 7 d of long DL (18 h light:6 h dark); and 7 d of short DL (6 h light:18 h dark). Subcutaneous AT biopsies were performed at the end of each phase. Prolactin, growth hormone, cortisol, leptin, glucose, nonesterified fatty acids, β-OH-butyrate, and cholesterol were determined in plasma samples. Abundance of leptin mRNA, and Ob-Ra and Ob-Rb leptin receptor mRNA were determined in AT samples by ribonuclease protection assay. Day length did not affect feed intake or body condition score. Exposure to short DL significantly reduced milk yield (13.1 ± 2.2 vs. 15.8 ± 1.7 and 16.0 ± 2.0 kg/d for short vs. neutral and long DL, respectively). Plasma leptin, growth hormone, cortisol, nonesterified fatty acids, β-OH-butyrate, and glucose were not affected by DL; cholesterol was lowest under short DL (3.93 ± 0.38 vs. 4.36 ± 0.39 and 4.07 ± 0.38 mmol/L for short vs. neutral and long DL, respectively). Prolactin increased under long DL (134.82 ± 16.94 vs. 81.98 ± 20.25 and 96.16 ± 0.38 ng/mL for long vs. neutral and short DL, respectively). Gene expression of leptin and its receptors was affected by DL. Leptin mRNA increased under long DL (11.91 ± 0.84 vs. 7.82 ± 0.84 and 7.56 ± 0.84 pg of mRNA/μg of total RNA for long vs. neutral and short DL, respectively). Leptin receptors Ob-Ra and Ob-Rb mRNA were higher under long DL, whereas Ob-Ra and Ob-Rb mRNA were lower under short DL (Ob-Ra: 1.91 ± 0.41, 2.49 ± 0.41, and 0.65 ± 0.41 pg of mRNA/μg of total RNA for neutral, long, and short DL, respectively; Ob-Rb: 5.29 ± 0.79, 5.98 ± 0.68, and 2.02 ± 0.70 pg of mRNA/μg of total RNA for neutral, long, and short DL, respectively). Results of the present study appear to exclude an effect of feed intake and metabolic status on leptin gene expression. A prolactin-mediated effect of photoperiod on AT leptin modulation may be proposed in lactating dairy cows.  相似文献   

9.
10.
11.
Thiazolidinediones (TZD) are potent, synthetic ligands for peroxisome proliferator activated receptor-gamma (PPAR-γ) that reduce plasma nonesterified fatty acids (NEFA) and potentiate the action of insulin in peripheral tissues of several species. Holstein cows (n = 9) entering their second or greater lactation were used to determine whether late prepartum administration of TZD would affect periparturient metabolism and milk production. Cows were limit-fed a total mixed ration (TMR) during the prepartum period to provide no more than 130% of predicted energy requirements. During the postpartum period cows were fed a common TMR for ad libitum intake. Cows were administered either 2,4-TZD (4.0 mg/kg of body weight) or saline (control) by intrajugular infusion once daily from 25 d before expected parturition until parturition. Plasma samples were collected daily from 26 d before expected parturition through 7 d postpartum. Plasma NEFA concentrations decreased during the prepartum period (d −21 to −1; 70 vs. 83 ± 4 μEq/L) and tended to be decreased during the peripartum period (d −7 to d +7; 113 vs. 205 ± 32 μEq/L) due to prepartum TZD administration. Plasma concentrations of glucose were not affected by treatment; however, plasma β-hydroxybutyrate concentrations decreased in TZD-treated cows (8.6 vs. 10.7 ± 1.7 mg/dL) as parturition approached, and plasma insulin concentrations increased during the peripartum period (0.65 vs. 0.38 ± 0.07 ng/mL). Postpartum liver triglyceride and glycogen content was not affected by treatment. Prepartum TZD administration tended to increase dry matter intake during the peripartum and postpartum periods (16.6 vs. 14.6 ± 0.8 kg/d and 20.0 vs. 17.2 ± 1.2 kg/d, respectively). Milk yield for the first 30 d postpartum and milk composition measured on d 8 postpartum were not affected by treatment. There was no effect of prepartum TZD administration on insulin-dependent glucose utilization assessed using insulin challenge during either the prepartum or postpartum periods. These results suggest that administration of TZD during the late prepartum period has the potential to improve metabolic health and DMI of periparturient dairy cows and warrants further investigation.  相似文献   

12.
13.
Glucose uptake in tissues is mediated by insulin receptor (INSR) and glucose transporter 4 (GLUT4). The aim of this study was to examine the effect of body condition during the dry period on adipose tissue mRNA and protein expression of INSR and GLUT4, and on the dynamics of glucose and insulin following the i.v. glucose tolerance test in Holstein cows 21 d before (d ?21) and after (d 21) calving. Cows were grouped as body condition score (BCS) ≤3.0 (thin, T; n = 14), BCS = 3.25 to 3.5 (optimal, O; n = 14), and BCS ≥3.75 (overconditioned, OC; n = 14). Blood was analyzed for glucose, insulin, fatty acids, and β-hydroxybutyrate concentrations. Adipose tissue was analyzed for INSR and GLUT4 mRNA and protein concentrations. During the glucose tolerance test 0.15 g/kg of body weight glucose was infused; blood was collected at ?5, 5, 10, 20, 30, 40, 50, and 60 min, and analyzed for glucose and insulin. On d ?21 the area under the curve (AUC) of glucose was smallest in group T (1,512 ± 33.9 mg/dL × min) and largest in group OC (1,783 ± 33.9 mg/dL × min), and different between all groups. Basal insulin on d ?21 was lowest in group T (13.9 ± 2.32 µU/mL), which was different from group OC (24.9 ± 2.32 µU/mL. On d ?21 the smallest AUC 5–60 of insulin in group T (5,308 ± 1,214 µU/mL × min) differed from the largest AUC in group OC (10,867 ± 1,215 µU/mL × min). Time to reach basal concentration of insulin in group OC (113 ± 14.1 min) was longer compared with group T (45 ± 14.1). The INSR mRNA abundance on d 21 was higher compared with d ?21 in groups T (d ?21: 3.3 ± 0.44; d 21: 5.9 ± 0.44) and O (d ?21: 3.7 ± 0.45; d 21: 4.7 ± 0.45). The extent of INSR protein expression on d ?21 was highest in group T (7.3 ± 0.74 ng/mL), differing from group O (4.6 ± 0.73 ng/mL), which had the lowest expression. The amount of GLUT4 protein on d ?21 was lowest in group OC (1.2 ± 0.14 ng/mL), different from group O (1.8 ± 0.14 ng/mL), which had the highest amount, and from group T (1.5 ± 0.14 ng/mL). From d ?21 to 21, a decrease occurred in the GLUT4 protein levels in both groups T (d ?21: 1.5 ± 0.14 ng/mL; d 21: 0.8 ± 0.14 ng/mL) and O (d ?21: 1.8 ± 0.14 ng/mL; d 21: 0.8 ± 0.14 ng/mL). These results demonstrate that in obese cows adipose tissue insulin resistance develops prepartum and is related to reduced GLUT4 protein synthesis. Regarding glucose metabolism, body condition did not affect adipose tissue insulin resistance postpartum.  相似文献   

14.
Repeated bolus doses of tumor necrosis factor-α (TNFα) alters systemic metabolism in lactating cows, but whether chronic release of inflammatory cytokines from adipose tissue has similar effects is unclear. Late-lactation Holstein cows (n = 9–10/treatment) were used to evaluate the effects of continuous adipose tissue TNFα administration on glucose and fatty acid (FA) metabolism. Cows were blocked by feed intake and milk yield and randomly assigned within block to control or TNFα treatments. Treatments (4 mL of saline or 14 µg/kg of TNFα in 4 mL of saline) were infused continuously over 7 d via 2 osmotic pumps implanted in a subcutaneous adipose depot. Plasma, milk samples, milk yield, and feed intake data were collected daily, and plasma glucose turnover rate was measured on d 7. At the end of d 7, pumps were removed and liver and contralateral tail-head adipose biopsies were collected. Results were modeled with the fixed effect of treatment and the random effect of block. Treatment with TNFα increased plasma concentrations of the acute phase protein haptoglobin, but did not alter plasma TNFα, IL-4, IL-6, or IFN-γ concentrations, feed intake, or rectal temperature. Milk yield and composition were unchanged, and treatments did not alter the proportion of short- versus long-chain FA in milk on d 7. Treatments did not alter plasma free FA concentration, liver triglyceride content, or plasma glucose turnover rate. Surprisingly, TNFα infusion tended to decrease liver TNFα and IL-1 receptor 1 mRNA abundance and significantly increased adipose tissue IL-10 protein concentration. Continuous infusion of TNFα did not induce the metabolic responses previously observed following bolus doses delivered at the same rate per day. Metabolic homeostasis may have been protected by an adaptive anti-inflammatory response to control systemic inflammation.  相似文献   

15.
16.
Our objective was to determine dietary energy effects on feed intake, internal fat deposition, body condition score (BCS), visceral organ mass, and blood analytes in Holstein cows. Eighteen nonpregnant, nonlactating cows (BCS = 3.04 ± 0.25) were blocked based on initial BCS and were randomly assigned within each block to 2 treatments. Treatments were either high energy [HE; net energy for lactation (NEL) = 1.62 Mcal/kg] or low energy (LE; NEL = 1.35 Mcal/kg) diets fed as total mixed rations for 8 wk. The LE diet consisted of 81.7% forage, including 40.5% wheat straw and 28.3% corn silage, whereas the HE diet contained 73.8% forage with no straw and 49.9% corn silage (dry matter basis). Cows were fed for ad libitum intake once daily at 0800 h. Feed intake was recorded daily, blood was sampled at wk 1, 4, and 7, and BCS was assigned at wk 1, 4, and 7. Cows were killed following the 8-wk period, and visceral organs, mammary gland, and internal adipose tissues were weighed and sampled. The HE group had greater dry matter intake (15.9 vs. 11.2 ± 0.5 kg/d) and energy intakes than cows fed LE, but neutral detergent fiber intake did not differ (5.8 vs. 5.6 ± 0.25 kg/d for HE and LE). Final body weight was greater for cows fed HE (807 vs. 750 kg), but BCS did not differ between groups (3.52 vs. 3.47 for HE and LE). Omental (26.8 vs. 15.2 ± 1.6 kg/d), mesenteric (21.5 vs. 11.2 ± 1.9 kg), and perirenal (8.9 vs. 5.4 ± 0.9 kg) adipose tissue masses were larger in HE cows than in LE cows. Although subcutaneous adipose mass was not measured, carcass weight (including hide and subcutaneous fat) did not differ between HE (511 kg) and LE (496 kg). Liver weight tended to be greater for cows fed HE, but weights of gastrointestinal tract, heart, and kidney did not differ. Serum insulin tended to be greater and the glucose to insulin ratio was lower for cows fed HE. Serum concentrations of β-hydroxybutyrate and cholesterol were greater for HE cows than for LE cows but concentrations of glucose, nonesterified fatty acids, total protein, and albumin did not differ. Final BCS was correlated with masses of omental (r = 0.57), mesenteric (r = 0.59), and perirenal (r = 0.72) adipose tissue, but mesenteric adipose mass increased more as BCS increased for cows fed HE. The similar final BCS between HE and LE cows demonstrates that BCS may lack sensitivity to detect differences in visceral fat deposition that might increase risk for peripartal diseases and disorders.  相似文献   

17.
《Journal of dairy science》2023,106(5):3650-3661
Amplified adipose tissue (AT) lipolysis and suppressed lipogenesis characterize the periparturient period of dairy cows. The intensity of lipolysis recedes with the progression of lactation; however, when lipolysis is excessive and prolonged, disease risk is exacerbated and productivity compromised. Interventions that minimize lipolysis while maintaining adequate supply of energy and enhancing lipogenesis may improve periparturient cows' health and lactation performance. Cannabinoid-1 receptor (CB1R) activation in rodent AT enhances the lipogenic and adipogenic capacity of adipocytes, yet the effects in dairy cow AT remain unknown. Using a synthetic CB1R agonist and an antagonist, we determined the effects of CB1R stimulation on lipolysis, lipogenesis, and adipogenesis in the AT of dairy cows. Adipose tissue explants were collected from healthy, nonlactating and nongestating (NLNG; n = 6) or periparturient (n = 12) cows at 1 wk before parturition and at 2 and 3 wk postpartum (PP1 and PP2, respectively). Explants were treated with the β-adrenergic agonist isoproterenol (1 μM) in the presence of the CB1R agonist arachidonyl-2′-chloroethylamide (ACEA) ± the CB1R antagonist rimonabant (RIM). Lipolysis was quantified based on glycerol release. We found that ACEA reduced lipolysis in NLNG cows; however, it did not exhibit a direct effect on AT lipolysis in periparturient cows. Inhibition of CB1R with RIM in postpartum cow AT did not alter lipolysis. To evaluate adipogenesis and lipogenesis, preadipocytes isolated from NLNG cows' AT were induced to differentiate in the presence or absence of ACEA ± RIM for 4 and 12 d. Live cell imaging, lipid accumulation, and expressions of key adipogenic and lipogenic markers were assessed. Preadipocytes treated with ACEA had higher adipogenesis, whereas ACEA+RIM reduced it. Adipocytes treated with ACEA and RIM for 12 d exhibited enhanced lipogenesis compared with untreated cells (control). Lipid content was reduced in ACEA+RIM but not with RIM alone. Collectively, our results support that lipolysis may be reduced by CB1R stimulation in NLNG cows but not in periparturient cows. In addition, our findings demonstrate that adipogenesis and lipogenesis are enhanced by activation of CB1R in the AT of NLNG dairy cows. In summary, we provide initial evidence which supports that the sensitivity of the AT endocannabinoid system to endocannabinoids, and its ability to modulate AT lipolysis, adipogenesis, and lipogenesis, vary based on dairy cows' lactation stage.  相似文献   

18.
19.
20.
《Journal of dairy science》2022,105(4):3687-3701
Adipose tissue (AT) is a central reservoir of energy stored in the form of lipids. In addition, AT has been recognized as an immunologically and endocrinologically active tissue of dairy cattle. The recent literature on AT biology of transition dairy cows has often focused on the possible negative effects that originate from excessive body fat. However, the highly efficient energy-storage capability of this tissue is also vital to the adaptability of dairy cattle to the change in nutrient availability, and to support lactation and reproduction. An excessive degree of mobilization of this tissue, however, is associated with high circulating fatty acid concentrations, and this may have direct and indirect negative effects on reproductive health, productivity, and disease risk. Furthermore, rapid lipolysis may be associated with postpartum inflammation. Research on the role of AT is complicated by the greater difficulty of accessing and measuring visceral AT compared with subcutaneous AT. The objective of this review is to provide a transition cow–centric summary of AT biology with a focus on reviewing methods of measuring AT mass as well as to describe the importance for production, health, and reproductive success.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号