首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 591 毫秒
1.
We tested the neuroprotective potential of the Bcl-2(20-34) peptide sequence in hippocampal slices. Treatment with Bcl-2 after fluid percussion trauma significantly improved recovery of CA1 antidromic PS to a mean of 92%+/-1 of initial amplitude, compared with only 16%+/-2 in unmedicated slices. The EC50 for trauma protection was 84 microM Bcl-2(20-34). Protection with Bcl-2(20-34) also extended to long-term potentiation. No protection was seen with the reverse sequence of Bcl-2(20-34). Treatment with Bcl-2(20-34) also protected against hypoxic damage, with treated slices recovering to 98%+/-2, while unmedicated slices recovered to 14%+/-2. Similar protection was seen against AMPA, NMDA and nitric oxide. These findings indicate that Bcl-2(20-34) provides specific neuroprotection against acute CA1 neuronal injury.  相似文献   

2.
In the present study, we have measured partial pressure of oxygen (pO2) profiles through rat brain slices before and after periods of hypoxia (5 and 10 min) to determine its effect on tissue oxygen demand. Tissue pO2 profiles were measured through rat cerebral cortex slices superfused with phosphate buffer using oxygen (O2)-sensitive microelectrodes at different times in controls [40% O2 balance nitrogen (N2)], and at different times before and after 5 or 10 min of hypoxia (100% N2). A one-dimensional, steady-state model of ordinary diffusion with a Michaelis-Menten model of O2 consumption where the maximal O2 consumption (Vmax) and the rate at half-maximal O2 consumption (Km) were allowed to vary was used to determine the kinetics of O2 consumption. Actual pO2 profiles through tissue were fitted to theoretical profiles by a least-squares method. Vmax varied among penetrations in a control slice and among slices. Vmax seemed to decrease after hypoxic insult, but the change was not statistically significant. The Km value measured before hypoxia was lower than the first Km value measured after the end of hypoxia, indicating that hypoxia induced a compensatory change in the metabolic state of the tissue. Km increased immediately after both 5- and 10-min hypoxic insults and returned to normal after recovery for each case. It seems that during and immediately after short periods of hypoxia, Km increases from near zero but returns to normal values within a few minutes.  相似文献   

3.
BACKGROUND: 99mTc-HL91 is a new hypoxia imaging agent that demonstrates increased uptake and retention in globally hypoxic myocardium in vitro. The purpose of this study was to determine whether 99mTc-HL91 could detect regional ischemia in vivo by gamma camera imaging. METHODS AND RESULTS: Eight open-chest dogs with left circumflex (LCx) stenoses were studied. Injection of 5 mCi of 99mTc-HL91 and microspheres was followed by imaging over 4 hours. Heart slices were imaged, then stained with triphenyltetrazolium chloride (TTC), and tissues were well-counted. TTC staining demonstrated no injury. Mean LCx blood flow was 0.32+/-0.04 mL x min(-1) x g(-1), and mean left anterior descending coronary artery (LAD) flow was 0.96+/-0.02 mL x min(-1) x g(-1) (ratio, 0.33). "Hot spots" were detected in 8 of 8 experiments in vivo within 60 minutes and improved over 4 hours. Region of interest analysis of LCx/LAD activity ratios demonstrated significant increases within 30 minutes (final ratio, 3.0; P<0.05). LCx and LAD washout curves demonstrated significant differences within 15 minutes. Washout curves were biexponential over 1 hour, followed by linear retention from 1 to 4 hours. Four-hour fractional retention was 0.12 for LAD and 0.44 for LCx (P<0.01). Myocardial flow versus tracer uptake demonstrated 2 phases: phase 1 (flow, 0.05 to 0.7 mL x min(-1) x g(-1)) had an inverse linear correlation (r= -0.80); phase 2, (flow, >0.7 mL x min(-1) x g(-1)) had no correlation. Ischemic heart/liver ratios remained near 1.0 for 4 hours. CONCLUSIONS: 99mTc-HL91 positively identifies regional myocardial ischemia in a canine model using 99mTc imaging. Quantitative techniques allowed identification of ischemic myocardium within 15 minutes of tracer administration.  相似文献   

4.
Sublethal ischemia or hypoxia triggers adaptive changes that protect the brain against future hypoxic/ischemic damage. Preexposure of in vitro hippocampal slices to brief periods of hypoxia increases the resistance of Schaffer collateral-CA1 synaptic potentials to further, longer periods of hypoxia that would otherwise cause an irreversible loss of synaptic transmission. Since hypoxia has been shown to cause alterations in the patterns of protein synthesis, we hypothesized that newly-expressed proteins might mediate hypoxia-induced neuroprotection. We report here that the induction of neuroprotection by hypoxic preconditioning in rat hippocampal slices is blocked by either cycloheximide, a protein synthesis inhibitor, or by Actinomycin D, an inhibitor of RNA synthesis. In contrast, pharmacological blockade of the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) and N-methyl-D-aspartate (NMDA) subtypes of glutamate receptors did not prevent the induction of neuroprotection by hypoxia. Carbon monoxide (CO), which can lock heme moieties in their oxygenated configurations, did prevent hypoxia from inducing neuroprotection. We conclude that hypoxia activates protective mechanisms via deoxygenation of a heme moiety, triggering expression of gene products which protect synaptic function from subsequent hypoxic damage.  相似文献   

5.
A 10 min exposure of rat hippocampal slices to hypoxic/hypoglycemic medium decreased tissue adenosine 5'-triphosphate (ATP) levels. Hypoxia/hypoglycemia also caused an anoxic depolarization and essentially no recovery of the synaptically evoked population spike from CA1 region recorded 30 min after re-introduction of normoxic/normoglycemic medium. Removal of Ca2+ or the addition of either the non-competitive N-methyl-D-aspartate antagonist dizocilpine maleate, the inorganic Ca2+ channel antagonist Co2+; or the Na+ channel blocker tetrodotoxin to hypoxic/hypoglycemic medium improved recovery of the evoked population spike upon re-oxygenation. Dizocilpine maleate, Co2+, and tetrodotoxin spared ATP during exposure to hypoxia/hypoglycemia. In contrast, Ca(2+)-free medium facilitated recovery of the population spike but did not preserve ATP during hypoxia/hypoglycemia. Dizocilpine maleate, Co2+ or dantrolene, when added to Ca(2+)-free medium, did not preserve ATP. Tetrodotoxin, when added to Ca(2+)-free medium, was effective in sparing ATP in hypoxic/hypoglycemic medium. To determine the effect of anoxic depolarization on ATP levels, hippocampal slices were collected just before and after the depolarization. There appeared to be an abrupt drop in ATP associated with the anoxic depolarization. We conclude that Na+ influx plays a relatively larger role in ATP consumption during hypoxia/hypoglycemia than Ca2+ influx. In addition, the anoxic depolarization imposes a large and rapid drop in ATP levels.  相似文献   

6.
Neurons in the neonatal mammalian brain survive greater degrees of hypoxic stress than those in the mature brain. To investigate how developmental changes in glutamate receptor-mediated neurotoxicity contribute to this difference, we measured hypoxia-evoked glutamate release, glutamate receptor contribution to hypoxia-evoked intracellular calcium changes, and survival of hypoxia-/ischemia-sensitive CA1 neurons in rat hippocampus. Glutamate release was measured by a fluorescence assay, calcium changes in CA1 neurons with fura-2, and cell viability using Nissl and fluorescence staining with calcein-AM/ethidium homodimer, all in 300-micron thick hippocampal slices from 3-30 post-natal day (PND) rats. Glutamate released from PND 3-7 slices during hypoxia (PO2 = 5 mmHg) was only one third that of PND 18-22 slices. In PND 3-7 slices, survival of CA1 neurons after 5 min of hypoxia and 6 h of recovery was significantly greater than in PND 18-22 slices (viability indices 0.60 and 0.28, respectively, (p < 0.05). Five min of anoxia significantly altered Nissl staining pattern and morphology of CA1 neurons in PND 18-22 but not PND 3-7 slices. Hypoxia (PO2 = 5 mm Hg) caused three to five times greater increases in [Ca2+]i in PND 18-22 slices than in PND 3-7 slices (p < 0.001). During re-oxygenation, [Ca2+]i returned to baseline in PND 3-7 slices, but remained elevated in PND 18-22 slices. Glutamate receptor-mediated calcium changes in CA1 during hypoxia were 33% and 62% of the total calcium change in PND 3-7 and PND 18-22 CA1, respectively. We conclude that survival of CA1 neurons in PND 3-7 slices following hypoxic stress is associated with smaller increases and enhanced recovery of [Ca2+]i, less accumulation of glutamate, and less glutamate receptor-mediated calcium influx than in PND 18-22 slices.  相似文献   

7.
During the first weeks of life, injury to the central nervous system caused by brief periods of oxygen deprivation greatly increases. To investigate possible causes for this change, the effects of hypoxia or application of the excitatory neurotransmitter glutamate on intracellular calcium ([Ca2+]i) and ATP were studied in rat cerebrocortical brain slices. [Ca2+]i was measured fluorometrically with the indicator Fura-2. Hypoxia (95% N2/5% CO2) or 100 microM sodium cyanide produced gradual elevations in [Ca2+]i and ATP depletion in slices from rats < 2 weeks old, but rapid changes in older rats. After 20 min, [Ca2+]i in adult slices exposed to cyanide was 1,980 +/- 310 nM; in day 1-14 animals, it was 796 +/- 181 nM (p < 0.05). Combination of cyanide and a glycolytic inhibitor (iodoacetate) rapidly elevated [Ca2+]i and depleted ATP in all age groups. Energy utilization during anoxia, assessed by measuring ATP fall in cyanide/iodoacetate-treated brain slices, increased with age. Elevations in [Ca2+]i caused by application of 500 microM glutamate increased 240% from days 1-2 to day 28, but ATP loss caused by glutamate did not change with age. The N-methyl-D-aspartate antagonist MK-801 delayed calcium entry during the initial 5-7 min of hypoxia or cyanide in rats < 2 weeks old. We conclude that anaerobic ATP production, conservation of energy by reduced ATP consumption, and reduced sensitivity to glutamate contribute to delaying elevation in [Ca2+]i in neonatal rat brain during hypoxia.  相似文献   

8.
To investigate the mechanism of generation of the hypoxia-induced hyperpolarization (hypoxic hyperpolarization) in hippocampal CA1 neurons in rat tissue slices, recordings were made in current-clamp mode and single-electrode voltage-clamp mode. Superfusion with hypoxic medium produced a hyperpolarization and corresponding outward current, which were associated with an increase in membrane conductance. Reoxygenation produced a further hyperpolarization, with corresponding outward current, followed by a recovery to the preexposure level. The amplitude of the posthypoxic hyperpolarization was always greater than that of the hypoxic hyperpolarization. In single-electrode voltage-clamp mode, it was difficult to record reproducible outward currents in response to repeated hypoxic exposure with the use of electrodes with a high tip resistance. The current-clamp technique was therefore chosen to study the pharmacological characteristics of the hypoxic hyperpolarization. In 60-80% of hippocampal CA1 neurons, glibenclamide or tolbutamide (3-100 microM) reduced the amplitude of the hypoxic hyperpolarization in a concentration-dependent manner by up to approximately 70%. The glibenclamide or tolbutamide concentrations producing half-maximal inhibition of the hypoxic hyperpolarization were 6 and 12 microM, respectively. The chord conductance of the membrane potential between -80 and -90 mV in the absence of glibenclamide (30 microM) or tolbutamide (100 microM) was 2-3 times greater than that in the presence of glibenclamide or tolbutamide. In contrast, the reversal potential of the hypoxic hyperpolarization was approximately -83 mV in both the absence and presence of tolbutamide or glibenclamide. In approximately 40% of CA1 neurons, diazoxide (100 microM) or nicorandil (1 mM) mimicked the hypoxic hyperpolarization and pretreatment of these drugs occluded the hypoxic hyperpolarization. When ATP was injected into the impaled neuron, hypoxic exposure could not produce a hyperpolarization. The intracellular injection of the nonhydrolyzable ATP analogue 5'-adenylylimidodiphosphate lithium salt reduced the amplitude of the hypoxic hyperpolarization. Furthermore, application of dinitrophenol (10 microM) mimicked the hypoxic hyperpolarization, and the dinitrophenol-induced hyperpolarization was inhibited by either pretreatment of tolbutamide or intracellular injection of ATP, indicating that the hypoxic hyperpolarization is highly dependent on intracellular ATP. It is therefore concluded that in the majority of hippocampal CA1 neurons, exposure to hypoxic conditions resulting in a reduction in the intracellular level of ATP leads to activation of ATP-sensitive potassium channels with concomitant hyperpolarization.  相似文献   

9.
10.
OBJECTIVE: The aim was to examine the effects of alterations in intracellular pH and inorganic phosphate concentration (known to influence myofilament kinetics and to change rapidly during hypoxia) on cell contraction, relaxation, and the Ca2+ transient in normoxic and hypoxic myocytes. METHODS: Single adult rat ventricular myocytes were electrically stimulated (0.2 Hz) and cell length (photodiode array), intracellular Ca2+ (indo-1 fluorescence), or intracellular pH (SNARF-1 fluorescence) measured. Hypoxia was induced in a special open chamber in which a laminar layer of argon prevented the back diffusion of atmospheric oxygen. RESULTS: Electrically stimulated contraction was preserved during exposure to hypoxia. At reoxygenation 10 minutes later the time from the stimulus to the peak of contraction (TPK) increased by 30(SEM 9)% and the time from the peak of contraction to 50% recovery of cell length (RT50) increased by 59(13)% relative to prehypoxic values (n = 8). These changes were not accompanied by a change in the kinetics of the Ca2+ transient. pHi fell from a baseline of 7.33(0.04) to 7.25(0.03) during hypoxia and then overshot to 7.44(0.03) at reoxygenation (n = 5). Since an intracellular alkalosis can slow myofilament relaxation, proton extrusion routes were blocked to examine posthypoxic relaxation in the absence of an alkalosis. Despite inhibition of the pHi overshoot, posthypoxic relaxation remained impaired. Intracellular inorganic phosphate levels were manipulated in two protocols (2-deoxyglucose to "trap" phosphate and Tris(hydroxymethyl)-aminomethane to buffer phosphate) and both TPK and RT50 increased in normoxic cells. Having established that these two interventions, which would be expected to decrease intracellular inorganic phosphate, result in a slowing of relaxation, myocytes were first phosphate loaded (exposed to 5.0 mM phosphate) and then made hypoxic and reoxygenated after 10 min to blunt the expected fall in phosphate accompanying reoxygenation. This led to a reduction in the slowing of contraction and relaxation following reoxygenation [TPK increased by 7(5)% and RT50 by 17(9)%, n = 8; p < 0.05 v cells studied in control buffer]. CONCLUSIONS: Impaired posthypoxic relaxation is not the result of changes in pHi but is attenuated by phosphate loading of cells and may be due to a rapid decrease in intracellular phosphate accompanying the resynthesis of high energy phosphates at reoxygenation.  相似文献   

11.
Chronic hypoxia produces pulmonary artery hypertension through vasoconstriction and structural remodeling of the pulmonary vascular bed. The present study was designed to test the effect of heparin administered via aerosol on the development of hypoxic pulmonary hypertension. Anesthetized, intubated, and mechanically ventilated guinea pigs received an aerosol of either 2 ml normal saline (hypoxic control, HC) or 4,500 units of heparin diluted in 2 ml normal saline via an ultrasonic nebulizer (hypoxic heparin, HH). After 24 h of recovery, the animals were placed in a hypoxic chamber (10% O2) for 10 days. Animals kept in room air served as normoxic controls (NC). Hypoxia increased mean pulmonary artery pressure from 11 +/- 1 (SEM) mm Hg in NC to 24 +/- 1 mm Hg in HC (p < 0.05). Pulmonary artery pressure was significantly lower in HH-treated animals (20 +/- 1 mm Hg, p < 0.05 versus HC) as was the total pulmonary vascular resistance (0.15 +/- 0.01 in HH versus 0.20 +/- 0.01 mm Hg/ml/min in HC, p < 0.05). There was no difference in cardiac output (146 +/- 12 in HH versus 126 +/- 7 ml/min in HC), hematocrit (57 +/- 2 in HH versus 56 +/- 2% in HC), partial thromboplastin time (30 +/- 2 in HH versus 32 +/- 3 s in HC), prothrombin time (46 +/- 1 in HH versus 48 +/- 4 s in HC) or room air arterial blood gas values after 10 days of hypoxia.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
PURPOSE: Integrins alphavbeta3 and alphavbeta5 are cell-to-matrix adhesion molecules that have been reported to mediate vascular cell proliferation and migration. The authors investigated the regulation of expression of these angiogenic integrins by hypoxia and vascular endothelial growth factor (VEGF) in retinal microvascular endothelial cells in culture. METHODS: Cultured bovine retinal capillary endothelial cells were exposed to human recombinant VEGF under normoxic (95% air, 5% CO2) conditions to assess the effects of VEGF. Hypoxia studies were performed under lower oxygen concentration (0.5%-1.5% O2) induced by nitrogen replacement in constant 5% CO2 conditions. Integrin family mRNA and protein expression were assessed by northern blot analysis and immunoprecipitation. RESULTS: VEGF (25 ng/ml) increased integrin alphav, beta3, and 35 mRNA after 24 hours 6.1+/-0.8-fold (P < 0.001), 5.9+/-1.1-fold (P < 0.001), and 1.9+/-0.2-fold (P < 0.01), respectively. Similarly, hypoxia stimulated gene expression of integrin alphav and beta3 after 24 hours by 5.1+/-1.7-fold (P < 0.01) and 3.0+/-0.5-fold (P < 0.01), respectively, and integrin beta5 after 9 hours 1.4+/-0.2-fold (P < 0.05). This hypoxia-induced, integrin alphav mRNA elevation was inhibited significantly by anti-VEGF neutralizing antibody. Also, a conditioned medium from confluent endothelial cells maintained under hypoxic conditions for 24 hours produced a 7.1+/-1.1-fold increase (P < 0.001) in integrin alphav mRNA expression after 24 hours, which was reversed by anti-VEGF neutralizing antibody. Induction of integrin alphav by VEGF and hypoxia was confirmed in the protein level. CONCLUSIONS: These data suggest that hypoxia stimulates expression of vascular integrins alphavbeta3 and alphavbeta5 in retinal microvascular endothelial cells partially through autocrine-paracrine action of VEGF induced by the hypoxic state.  相似文献   

13.
Previous studies have shown, employing direct measurements with electron spin resonance (ESR) spectroscopy, that hypoxia induces an increased production of oxygen free radicals (OFR) in the brain of the guinea pig fetus. The present study using the same approach, investigated the effects of maturity and Mg2+-pretreatment on hypoxia-induced OFR formation in the guinea pig fetal brain. The normoxic and the hypoxic groups were exposed for 60 min to 21% or 7% oxygen, respectively. The control group consisted of term fetuses exposed to normoxia (n=7) and hypoxia (n=7). The experimental groups consisted of the following: (a) for the investigation on maturity effect, preterm fetuses (40 days) exposed to normoxia (n=6) or hypoxia (n=6); and (b) for the Mg2+-pretreatment investigation, term fetuses (60 days) exposed to normoxia (n=6) or hypoxia (n=6) following maternal pretreatment with Mg2+ which consisted of an initial bolus of MgSO4 (600 mg/kg, i.p.) 1 h prior to hypoxia followed by a second dose (300 mg/kg, i.p.). Oxygen free radicals were measured by ESR spectroscopy in the fetal cerebral cortical tissue utilizing phenyl-N-tert-butylnitrone (PBN) spin trapping. Fetal brain tissue hypoxia was documented biochemically by decreased tissue levels of ATP and phosphocreatine. In the control group of term fetuses, the cortical tissue from hypoxic fetuses showed a significant increase in spin adducts (71% increase, p<0.01). In the preterm group, the cortical tissue from hypoxic fetuses showed a 33% increase in spin adducts (p<0.001). The baseline free radical generation during normoxia was 22.5% higher at preterm than at term (41.4+/-3.5 units/g issue vs. 33.8+/-9.3 units/g tissue, p<0.05). In Mg2+-treated groups, spin adduct levels in cortical tissue from hypoxic fetuses did not significantly differ from those of the normoxic group (30.2+/-9.9 units/g tissue, normoxic-Mg2+ vs. 30. 6+/-8.1 units/g tissue, hypoxic-Mg2+). The results indicate that the fetal brain at term may be more susceptible to hypoxia-induced free radical damage than at preterm and that Mg2+ administration significantly decreased the hypoxia-induced increase in oxygen free radical generation in the term fetal guinea pig brain in comparison with non-treated hypoxic group.  相似文献   

14.
ATP-dependent potassium (KATP) channels of neurons are closed in the presence of physiological levels of intracellular ATP and open when ATP is depleted during hypoxia or metabolic damage. The present study investigates hypoxic alterations of purine and pyrimidine nucleotide levels supposed to intracellularly modulate KATP channels. In addition, the effects of the KATP channel activator diazoxide and its antagonist tolbutamide were investigated on ATP, GTP, CTP and UTP levels in slices of the parietal cortex. Hypoxia was evoked by saturation of the medium with 95% N2-5% CO2 instead of 95% O2-5% CO2 for 5 min. Nucleotide contents were measured by anion-exchange HPLC in neutralized perchloric acid extracts obtained from slices frozen immediately at the end of incubation. Hypoxia per se decreased purine and pyrimidine nucleoside triphosphate contents. Thus, ATP and GTP contents were reduced to 69.9 and 77.6% of the respective normoxic levels. UTP and CTP contents were even more decreased (to 60.9 and 41.6%),, probably because the salvage pathway of these pyrimidine nucleotides is less effective than that of the purine nucleotides ATP and GTP. While tolbutamide (30 microM) had no effect on the hypoxia-induced decrease of nucleotides, diazoxide at 300, but not 30 microM aggravated the decline of ATP, UTP and CTP to 51.8, 37.5 and 28.5% of the contents observed at normoxia; GTP levels also showed a tendency to decrease after diazoxide application. Tolbutamide (300 microM) antagonized the effects of diazoxide (300 but not 30 microM aggravated the decline of ATP, UTP and CTP to 51.8, 37.5 and 28.5% of the contents observed at normoxia; GTP levels also showed a tendency to decrease after diazoxide application. Tolbutamide (300 microM) antagonized the effects of diazoxide (300 MicroM). Nucleoside diphosphate (ADP, GDP and UDP) levels were uniformly increased by hypoxia. There was no hypoxia-induced increase of ADP contents in the presence of tolbutamide (300 microM). The ATP/ADP, GTP/GDP and UTP/UDP ratios uniformly declined at a low pO2. However, only the ATP/ADP ratio was decreased further by diazoxide (300 microM). The observed alterations in nucleotide contents may be of importance for long- and short-term processes related to acute cerebral hypoxia. Thus, hypoxia-induced alterations of purine and pyrimidine nucleotide levels may influence the open state of KATP-channels during the period of reversible hypoxic cerebral injury. Furthermore, alterations during the irreversible period of cerebral injury may also arise, as a consequence of decreased pyrimidine nucleotide contents affecting cell survival viaprotein and DNA synthesis.  相似文献   

15.
F Bari  TM Louis  DW Busija 《Canadian Metallurgical Quarterly》1998,29(1):222-7; discussion 227-8
BACKGROUND AND PURPOSE: Arterial hypoxia mediates cerebral arteriolar dilation primarily via mechanisms involving activation of ATP-sensitive K+ channels (K[ATP]), which we have shown to be sensitive to ischemic stress. In this study, we determined whether ischemia/reperfusion alters cerebral arteriolar responses to arterial hypoxia in anesthetized piglets. Since adenosine plays an important role in cerebrovascular responses to hypoxia, we also determined whether adenosine-induced arteriolar dilation is affected by ischemic stress. We tested the hypothesis that reductions in cerebral arteriolar dilator responses after ischemia would be proportional to the contribution of K(ATP) to hypoxia and adenosine. METHODS: Pial arteriolar diameters were measured using a cranial window and intravital microscopy. We examined arteriolar responses to arterial hypoxia (inhalation of 8.5% and 7.5% O2), to topical adenosine (10[-5] and 10[-4] mol/L) and to arterial hypercapnia (inhalation of 5% and 10% CO2 in air) before and after 10 minutes of global ischemia. Ischemia was achieved by increasing intracranial pressure. Arterial hypercapnia was used as a positive control for the effectiveness of the ischemic insult. In addition, we evaluated cerebral arteriolar responses to 10(-5) and 10(-4) mol/L adenosine applied topically with or without glibenclamide, a selective inhibitor of K(ATP) (10[-5] and 10[-6] mol/L). Finally, we administered theophylline (20 mg/kg, i.v.) to assess the contribution of adenosine to cerebral arteriolar dilation to arterial hypoxia. RESULTS: Before ischemia, cerebral arterioles dilated by 19+/-3% to moderate and 29+/-4% to severe hypoxia (n=7; P<.05); 13+/-2% to 10(-5) and 20+/-1% to 10(-4) mol/L adenosine (n=9; P<.05); and by 17+/-2% to moderate and 28+/-3% to severe hypercapnia (n=6; P<.05). After ischemia, cerebral arteriolar responses to hypoxia and adenosine were unchanged. In contrast, cerebral arteriolar dilation to hypercapnia was impaired by ischemia (1+/-1% and 2+/-1% at 1 hour; n=6). Glibenclamide reduced cerebral arteriolar dilation to adenosine by approximately one half (n= 7). In addition, blockade of adenosine receptors by theophylline (20 mg/kg, i.v.) almost totally suppressed cerebral arteriolar dilation to arterial hypoxia (n = 6). CONCLUSIONS: Cerebrovascular responsiveness is selectively affected by anoxic stress. In addition, cerebral arteriolar dilation to hypoxia and adenosine is maintained after ischemia despite the expected impairment in K(ATP) function.  相似文献   

16.
The effect of hypoxia (3-4 min of 95% N2, 5% CO2) on thalamocortical (TC) neurons was investigated using the whole-cell patch-clamp technique in rat dorsal lateral geniculate nucleus slices kept submerged at 32 degreesC. The predominant feature of the response of TC neurons to hypoxia was an increase in input conductance (DeltaGN = 117 +/- 15%, n = 33) that was accompanied by an inward shift in baseline holding current (IBH) at -65 and -57 mV (DeltaIBH = -45 +/- 6 pA, n = 18, and -25 +/- 8 pA, n = 33, respectively) but not at -40 mV. The hypoxia-induced increase in GN (as well as the shift in IBH) was abolished by procedures that are known to block Ih, i.e., bath application of 4-(N-ethyl-N-phenylamino)-1, 2-dimethyl-6-(methylamino)-pyrimidinium chloride (100-300 microM) (DeltaGN = 5 +/- 13%, n = 11) and CsCl (2-3 mM) (DeltaGN = 16 +/- 16%, n = 5), or low [Na+]o (DeltaGN = 10 +/- 10%, n = 5), whereas bath application of BaCl2 (0.1-2.0 mM) had no significant effect (DeltaGN = 128 +/- 14%, n = 8). The hypoxic response was also abolished in low [Ca+2]o (DeltaGN = 25 +/- 16%, DeltaIBH = -6 +/- 8 pA, n = 13), but was unaffected by recording with electrodes containing EGTA (10 mM), BAPTA (10-30 mM), Cs+, or Cl-, as well as in the presence of external tetraethylammonium and 4-aminopyridine. Furthermore, preincubation of the slices with botulinum toxin A (100 nM), which is known to reduce Ca2+-dependent transmitter release, blocked the hypoxic response (DeltaGN = -3 +/- 15%, DeltaIBH = 10 +/- 5 pA, n = 4). We suggest that a positive shift in the voltage-dependence of Ih and a change in its activation kinetics, which transforms it into a fast activating current, may be responsible for the hypoxia-induced changes in GN and IBH, probably via an increase in Ca+2-dependent transmitter release.  相似文献   

17.
BACKGROUND: We reported that digoxin abolishes the infarct size (IS)-limiting effect of ischemic preconditioning (IPC). Because ATP-sensitive K+ (KATP) channels are involved in IPC, we studied whether Na+,K+-ATPase and KATP channels functionally interact, thereby modulating IPC. METHODS AND RESULTS: Rabbits received 30 minutes of coronary artery occlusion followed by 3 hours of reperfusion. IPC was elicited by 5 minutes of occlusion followed by 10 minutes of reperfusion. The IS, expressed as a percentage of the area at risk, was 40.2+/-2.8% in control and 39.8+/-5.0% in digoxin pretreatment rabbits. Both IPC and pretreatment with cromakalim, a KATP channel opener, reduced IS to 11.8+/-1.8% and 13.4+/-2.6% (P<0. 05 versus control). Digoxin abolished the reduction in IS induced by IPC (33.5+/-3.3%), whereas it did not change that induced by cromakalim (18.8+/-3.0%). In patch-clamp experiments, digoxin was found to inhibit the opening of KATP channels in single ventricular myocytes in which ATP depletion had been induced by metabolic stress. In contrast, digoxin had little effect on the channel opening induced by cromakalim. Moreover, the inhibitory action of digoxin on channel activities was dependent on subsarcolemmal ATP concentration. CONCLUSIONS: The IS-limiting effect of IPC is modulated by an interaction between KATP channels and Na+,K+-ATPase through subsarcolemmal ATP.  相似文献   

18.
Using online in vivo chemiluminescence (CL), we studied for the first time continuously the production of reactive oxygen species (ROS) after global cerebral ischemia and the relationship of ROS production to CBF. In anesthetized rats equipped with a closed cranial window, the CL enhancer, lucigenin (1 mM), was superfused onto the brain topically. CL was measured through the cranial window with a cooled photomultiplier, and CBF was measured simultaneously with laser-Doppler flowmetry. Reperfusion after 10 min (n = 8) of global cerebral ischemia led to a CL peak to 188 +/- 77% (baseline = 100%) within 10 +/- 4 min. After 2 h of reperfusion, CL had returned to 102 +/- 28%. Reperfusion after 20 min (n = 8) of ischemia increased CL to 225 +/- 48% within 12 +/- 3 min. After 2 h, CL was still increased (150 +/- 44%, p < 0.05 compared with 10 min of ischemia). CL after 10 min of ischemia was neither affected by brain topical free CuZn-superoxide dismutase (SOD) (100 U/ml, n = 3) nor by i.v. administration of free CuZn-SOD (104 U/kg, followed by 104 U/kg/h, n = 3). The CBF hyperfusion peak on reperfusion preceded the CL peak in all experiments by several minutes. In additional in vitro experiments we investigated the source of CL: Intracellular loading of lucigenin was demonstrated in cultured CNS cells, and a very similar pattern of CL as in the in vivo preparation after ischemia developed in rat brain slices after 15 min of hypoxia, which was unaffected by free CuZn-SOD (100 U/ml) but strongly attenuated by liposome-entrapped CuZn-SOD. We conclude that lucigenin-enhanced CL is a promising tool to study ROS production continuously from the in vivo brain of experimental animals and brain slices, and that the CL signal most likely derives from the intracellular production of superoxide. The production of ROS is preceded by reperfusion, is burst-like, and is dependent on the duration of the ischemic interval.  相似文献   

19.
Species differences in the biotransformation of the antiemetic tropisetron, a potent 5-hydroxytryptamine type 3 (5-HT3) receptor antagonist, were evident in liver slice incubates of human, rat and dog, and reflected the species differences observed in vivo with respect to the relative importance of individual pathways. The dominant biotransformation pathway of tropisetron (10 microM) in human liver slices was formation of 6-hydroxy-tropisetron, whereas in rat liver slices it was 5-hydroxy-tropisetron, and in dog liver slices N-oxide formation. Initial rates of tropisetron metabolite formation in the liver slices (8 mm in diameter, 200 +/- 25 microns thickness) of human (83 +/- 61 pmol/h/mg slice protein), rat (413 +/- 98 pmol/h/mg slice protein) and dog (426 +/- 38 pmol/h/mg slice protein) would predict less of a first-pass effect in humans compared to the rat or the dog. For human and rat, the prediction matched well with the species ranking of tropisetron bioavailability; however, for dog the in vitro data overestimated the apparent first-pass effect. The jejunum is not expected to contribute to the first-pass effect in humans, since human jejunum microsomes did not metabolize tropisetron. The major organ of excretion for tropisetron and its metabolites is the kidney, but the contribution of the kidney to the overall metabolism of tropisetron would be small. Species independent N-oxide formation (2-12 pmol/h/mg slice protein) was the major pathway in human, rat and dog kidney slices, and was comparable to N-oxide formation in the rat and human liver slices but was 1/10 the rate in dog liver slices. This study has demonstrated that the liver is the primary site of tropisetron biotransformation, and the usefulness of organ slices to characterize cross species differences in the dominant biotransformation pathways.  相似文献   

20.
Motor-evoked potentials (MEPs) from forearm muscles were recorded in response to single-shock electrical stimulation of motor cortex of rats (n = 15) under pentobarbital anesthesia and controlled room air ventilation. In addition, electroencephalograms (EEGs) were recorded for all animals. Following baseline MEP recording in room air (21% O2), animals were subjected to graded hypoxia of either 15.75%, 10.5%, or 5.25% oxygen for 10 minutes, then followed by room air ventilation for 15 minutes. The mean baseline latency, amplitude, and duration of the evoked muscle response were 4.3 +/- 0.4 mseconds, 556 +/- 476 microV, and 9.6 +/- 2.3 mseconds, respectively. At moderate hypoxia (15.75%), the latency was 4.2 +/- 0.5 mseconds and the amplitude and the duration were 530 +/- 356 microV (n = 14), and 9.5 +/- 2.2 mseconds, (n = 14). These values did not deviate significantly from baseline (p > 0.56). Only one animal lost MEPs at the 15.75% hypoxia level. At 10.5% hypoxia, 27% of animals (n = 4) lost MEP within minutes. In the remaining animals (n = 11), there was a trend toward a prolongation of latency and a decrease of both amplitude and duration. All animals lost MEPs under extreme hypoxia (5.25%) within 2 minutes. No change was seen in the EEG recording until the level of extreme hypoxia was reached. The loss of MEPs at this level of hypoxia was concurrent with the loss of EEGs. We conclude that hypoxia effects MEPs in experimental animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号